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Executive Summary 
 

Remote working, initially referred to as telework or smart work, has been a subject of research since the 1970s. 

The emergence of advanced information technology has facilitated professional work beyond traditional office 

spaces, impacting urban and rural dynamics, transportation, environmental factors, economic structures, and 

social relations. The COVID-19 pandemic accelerated the adoption of remote working arrangements, 

highlighting gaps in policies, regulations, and the need for systematic impact assessment. 

The HORIZON-EUROPE-funded R-Map Project (Mapping, Understanding, Assessing, and Predicting the Effects 

of Remote Working Arrangements in Urban and Rural Areas) seeks to comprehensively analyse the spatial, 

economic, and social effects of remote working arrangements, across Europe. Conducted by an international 

consortium from Greece, Turkey, the UK, the Netherlands, Italy, Austria, and Belgium, the project aims to 

understand and forecast the consequences of RWAs while providing actionable recommendations for 

policymakers. 

Understanding the interconnected social, spatial, and economic impacts of RWA presents a significant 

challenge due to the complexity of its cause-effect relationships. To address this, Task 2.1 and 2.2 focus on co-

designing an integrated impact assessment framework—the R-Map model—which systematically maps these 

relationships and implementing the model. The R-Map model serves as a conceptual framework to assess the 

effects of RWAs on the spatial, economic, and social aspects of the urban-rural divide in EU regions, and the 

implemented causal chain illustrates how parts of the conceptual framework can be translated into a 

computer model. A co-design process to conceptualise the R-Map model engaged consortium partners, the R-

Map Advisory Board, and domain and regional experts, ensuring an interdisciplinary approach. The 

implementation of the causal chain model built on the conceptual model. Key sub-objectives were: 

• Knowledge Synthesis: Establishing a shared understanding of the urban-rural divide based on WP1 

findings. 

• Dimension Definition: Defining the spatial, economic, and social dimensions of the urban-rural divide 

in the context of R-Map. 

• Key Factor Selection: Identifying critical factors influenced by RWAs across diverse regions. 

• Factor Assessment: Semi-quantifying these factors with expert input to evaluate their significance. 

• Arrive at a conceptual R-Map Model 

• Formulate indicators and harmonize datasets to inform a causal chain 

• Detail, implement and validate the R-Map Model 

The co-design process incorporated a review of participatory and analytical methods, including Causal Loop 

Diagrams, Fuzzy Cognitive Mapping, Participatory System Mapping, and Bayesian Belief Networks. A review of 

public and unconventional datasets (e.g., social media data) and WP1.5 survey results was also conducted. 

 

R-Map Conceptual Model Development 

The model was co-designed using Participatory System Mapping, incorporating expert and experiential 

knowledge. The conceptual R-Map model features: 
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• Causal impact chains across spatial, economic, and social domains. 

• A comprehensive causal network illustrating factor interdependencies. 

The R-Map model distinguishes drivers of remote working (e.g., digital infrastructure, transport accessibility, 

taxation policies) from impacts across spatial, social, economic, and environmental domains. Key social 

impacts include health and well-being, caring responsibilities, and social cohesion. Spatial impacts include 

polycentricity, land consumption, multilocality, mobility patterns, and relocation. Economic impacts include 

employee productivity, access to labour markets, and regional economic development. Additionally, socio-

economic impacts—work-life balance, workplace loneliness, cost of living, and tourist/digital nomad living 

space demand—were identified. Carbon emissions was incorporated later as an environmental impact. 

The model maps causal relationships between factors such as health and well-being, work-life balance, 

workplace loneliness, mobility patterns, polycentricity, and regional economic development. It distinguishes 

between direct and indirect causal relationships in specific causal chains, identifying mediators, confounders 

and colliders that influence impact assessments. The temporality of impacts varies, with short-term effects 

observed in workplace loneliness and work-life balance, while long-term effects emerge in spatial planning, 

land consumption, and regional economic shifts. 

Consensus among partners confirmed the strong effects of RWAs on health and well-being, mobility patterns, 

multilocality, polycentricity, social cohesion, work-life balance, workplace loneliness, access to labour markets, 

and local/regional economic development. The study also highlighted the role of digital infrastructure and 

transport accessibility as key drivers of RWAs and polycentricity’s broad influence across spatial and economic 

domains. The identification of mediators, confounders and colliders, along with the semi-quantification of 

indicators, facilitates the transition of the conceptual R-Map model into a computational model. Bayesian 

approaches will be used to refine causal relationships and enhance predictive capabilities. 

 

R-Map Model Operationalisation and Key Insights 

The implementation process involves several key steps: (1) selecting indicators and proxy variables for the 

factors identified in the conceptual model; (2) harmonising datasets to ensure consistency in scale, format, 

and spatial resolution, with a focus on the NUTS-2 level; (3) identifying a representative causal chain for 

implementation, based on data availability and interpretability; (4) reformulating causal relationships 

including the introduction of relevant control variables, while preserving the original conceptual structure, and 

(5) building and validating the model as an operational statistical system. The R-Map model is implemented 

as a Bayesian network in the Python programming environment, treating the conceptual structure as a graph-

based representation of probabilistic relationships between variables. The model integrates two primary data 

streams – empirical indicators derived from harmonised datasets; and stakeholder-informed priors, gathered 

through participatory activities and surveys conducted during Task 2.1. These inputs allow the Bayesian 

framework to quantify both expert-derived assumptions (as priors) and data-derived likelihoods, resulting in 

posterior distributions that capture the strength and uncertainty of relationships across the causal network. 

This structure supports both diagnostic analyses (i.e., identifying drivers of outcomes) and predictive analysis 

(e.g. simulating scenarios with predefined inputs). 

As a proof of concept, the analysis focuses on a specific causal chain: from RWA to Regional Economy, also 

incorporating factors such as tourism demand and transport accessibility, sequenced temporally based on the 

relative immediacy of their impacts as identified in survey data. We also run the model to investigate the 
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influence of the different drivers on RWA, including digital infrastructure accessibility, industry composition, 

demographics and country-fixed effects to capture variation in institutional frameworks. While significant 

drivers of RWA are identified—such as digital infrastructure, industry composition, youth demographics, and 

country-specific effects—the downstream influence of RWA on regional GDP is found to be statistically 

inconclusive within the current framework, likely due to data constraints and time-lagged impacts. 

 

Implications and Future Research Directions 

The findings obtained underscore the need for finer-grained data over multiple time points as macroeconomic 

impacts of RWA may manifest only over longer time horizons. The incorporation of spatial dependencies is 

proposed as a methodological enhancement to explore potential neighbourhood spillover effects, which are 

particularly relevant in regional development and cohesion policy contexts. 

Looking forward, the R-Map model will serve as the foundation for regional case studies under WP4. The 

framework is designed to be scalable and extensible, allowing for the integration of new datasets, updated 

causal chains, and refined indicators. Moreover, the model's structure supports its evolution into an 

interactive platform, equipped with modules for data harmonisation, visualisation, and user interface 

functionalities. These enhancements will increase the model’s accessibility and utility for both academic 

research and evidence-based policymaking. 
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1. Introduction 

Remote working, in early studies often referred to as telework or smart work, can be defined as professional 

working that takes place outside the office/workspace with the use of IT technology. The occurrence and 

effects of remote working have been researched already since the 1970s (Adobati and Debernadi 2022). A 

strong focus of research conducted on remote working has ever since been on the multitude of potential 

positive or negative impacts of remote working on e.g. spatial arrangements in cities and regions, transport 

infrastructure and mobility on employees, environmental impacts such as air and noise pollution and carbon 

emissions, and economic and social impacts for both employers and employees, among other impacts.  

The COVID-19 pandemic at the beginning of the 2020s gave a massive push not only to various remote working 

arrangements and technologies but also boosted research on both. Key findings (Krasilnikova and Keitel 2022) 

highlighted significant policy gaps and a lack of regulations and procedures to implement remote working 

arrangements (RWA). Further findings revealed that impacts of RWA can differ quite strongly between 

countries and regions, between economic sectors and can impact gender inequalities. 

With the ongoing rapid development of information and communication technologies including the adoption 

of AI in many economic sectors, the way of working will further change profoundly in many branches, and it is 

likely to assume that flexible working arrangements are continuously increasing with remote working 

becoming a natural part of it. Considering that, it is essential to better understand the diverse impacts of 

remote working to devise suitable remote working policies harvesting its positive outcomes and impacts on 

societies and countries and mitigating the negative impacts.      

 

1.1 Background and project context 

This report is written in the context of the HORIZON-EUROPE (HEU) funded R-Map Project (Mapping, 

understanding, assessing and predicting the effects of remote working arrangements in urban and rural 

areas) (Project 101132497 — R-Map), which is conducted by an international consortium of academics and 

professionals from Greece, Turkey, UK, Netherlands, Italy, Austria and Belgium. The overall goal of the R-Map 

project is to understand, forecast and suggest ways to address the impacts of remote working arrangements 

on the spatial (including environmental), economic and social facets of the urban-rural divide in Europe. This 

goal first requires a comprehensive understanding of the diversity of RWA across Europe and the diversity of 

impacts and effects resulting from them which has been accomplished in WP1 (Deliverables 1.1-1.4).  

Considering the insights of different RWA across Europe and the variety of impacts in the spatial, social and 

economic domains, an impact assessment model needs to be developed that allows to map, analyse and 

estimate future impacts of RWA and their relations under changing conditions. For this task, a basic impact 

assessment framework is required that is broad enough to cover the diversity of impacts and RWA across 

Europe and at the same time sufficiently flexible to be applied to varying contexts of diverse European regions. 

The development of the overall impact assessment framework and model is part of WP 2 while the application 

and contextualization of the R-Map model to various European regions is done in WP 4 of the R-Map project.  

That said, in WP2 the development of the impact assessment framework and R-Map model relies strongly on 

the knowledge obtained in WP1, i.e. the insights about RWA across Europe and the elicitation of impacts of 

RWA on the spatial, social and socio-economic domain, as reported in scientific literature and observed in 
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practice. The goal of the project is to base the development of the R-Map model not solely on scientific insights 

reported in the literature as the evidence on RWA impacts is partly in its infancy and currently deriving novel 

insights resulting from the COVID-19 pandemic, but also include experiential and professional knowledge from 

regional and domain-specific experts through a co-design process. 

 

1.2 Objectives and scope of Work Package 2 and Tasks 2.1 and 2.2 

The goals of WP2 entitled “Design of the R-Map model” are (i) to develop an Integrated Assessment 

Framework (the R-Map model) for assessing social, spatial and economic impacts of remote working 

arrangements at the European level, (ii) to develop a typology of EU regions based on how remote working 

arrangements have affected the spatial, economic and social facets of their urban-rural divide, and (iii) to 

define a taxonomy of economic and social impacts of remote working arrangements. 

The objective of the here reported Task 2.1 is to co-design the R-Map model for assessing the effects of RWA 

on the spatial, economic and social facets of the urban-rural divide in EU regions. This objective entails the 

sub-objectives of (1) synthesizing the knowledge produced in WP1 to agree on a common understanding of 

the urban/ rural divide, (2) defining the spatial, economic and social dimensions of the urban-rural divide in 

the context of R-Map, (3) selecting the key spatial, social and economic factors of the urban/ rural divide that 

are affected by remote working arrangements in the different regions, and (4) assessing and semi-quantifying 

these factors in terms of their importance drawing on expert knowledge. Output of Task 2.1 is the conceptual 

design of the R-Map model including semi-quantified cause-effects impact chains across domains and an 

overview of suitable data sources and sets to inform the selected impacts.  

Task 2.1 started with a review of participatory model-building methods and statistical methods for integrated 

impact assessment. Then, a review of publicly available datasets to inform spatial, social and economic factors 

representing impacts of remote working arrangements was conducted. This review also entails the inspection 

of unconventional data sources such as data derived from social media platforms, and an exploration of the 

data quality resulting from the large-scale survey conducted in WP 1.5. The co-design process as such consisted 

of 1 day co-design workshop at the University of Twente in September 2024, and 4 online (technical) 

workshops with consortium partners, advisory board members and domain and regional experts in which each 

iteration of the R-Map model was discussed and reflected upon. In between the workshop session, all partners 

were involved in the co-design via an online survey and review tasks. 

The objective of the here reported Task 2.2 is to detail, implement and validate the R-MAP-model for assessing 

the effects of remote working arrangements on the spatial, economic and social dimensions of the urban-rural 

divide in EU regions. The R-Map conceptual model arrived at Task 2.1 serves as the foundation for Task 2.2. 

More specifically, Task 2.2 is structured around three core sub-objectives: (1) formulating indicators for the 

identified spatial, social and economic factors in Task 2.1, (2) prepare and harmonize data sets to inform these 

indicators (either quantitatively or qualitatively), and (3) implementing the integrated R-Map model. The key 

output of Task 2.2 is the R-Map Integrated Assessment Framework, which formalises the conceptual structure 

into a working model capable of supporting empirical analysis and policy-relevant insights. 

In addition to the sub-objectives above, several critical steps were undertaken to operationalise the R-Map 

model: 
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1. Development of indicators and proxy variables aligned with the conceptual factors identified in Task 

2.1; 

2. Harmonization of datasets to ensure consistency in spatial resolution (primarily at the NUTS-2 level), 

format, and coverage; 

3. Selection of a representative causal chain for implementation, guided by data availability and 

interpretability; 

4. Reformulation of causal relationships, incorporating control variables as necessary, while maintaining 

coherence with the conceptual structure; 

5. Construction and validation of the model as an operational statistical system. 

The R-Map model is implemented as a Bayesian network using the Python programming environment, in 

which the conceptual model is translated into a graph-based statistical representation of interrelated 

variables. The model synthesises two principal data streams: empirical indicators derived from harmonized 

datasets; and stakeholder-informed priors, elicited through participatory processes and surveys conducted in 

Task 2.1. This Bayesian approach enables the integration of expert-informed assumptions (priors) with data-

driven evidence (likelihoods), generating posterior distributions that quantify the strength, direction, and 

uncertainty of causal relationships. The resulting model facilitates both: diagnostic analysis—to identify the 

most influential drivers of observed outcomes, and predictive simulation—to explore hypothetical policy or 

behavioural scenarios based on predefined input values. 

 

1.3 Project partners and others contributing to the report 

The co-design of the R-Map model was a collaborative effort led by the UT team. It actively involves all partners 

of the project consortium and the R-Map Advisory Board, as well as domain and regional experts to 

accommodate the inter- and transdisciplinary nature of the topic. All experts participated in the 1-day co-

design workshop at the UT and the subsequent online validation workshop (see for details section 2.3 and 

annex table 1 for a detailed list of participants). Also, the so-called sister projects of the R-Map project, the 

WinWin4WorkLife (WW4WL) project (https://winwin4worklife.eu) and the REMAKING project 

(https://remaking-project.eu) were contacted and invited to contribute to the co-design process during the 

online validation workshop. From these, WW4WL accepted the invitation and contributed valuable inputs to 

the process. 

 

1.4 Outline of the report 

Section 2 outlines the methodological approach used for the development of the R-Map conceptual model. It 

presents the rationale for selecting suitable participatory modelling and integrated impact assessment 

methods, establishes the relevant terminological and methodological framework, and details the co-design 

process employed to develop the R-Map model for assessing the social, spatial, and economic impacts of 

Remote Working Arrangements (RWAs). Section 3 provides a comprehensive description of the resulting 

conceptual R-Map model, including an in-depth discussion and analysis of the selected factors and the causal 

relationships that link them. Section 4 presents a critical review of the existing data sources available to inform 

and quantify the model’s factors, serving as the empirical foundation for the model’s operationalisation. 

https://winwin4worklife.eu/
https://remaking-project.eu/
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Section 5 focuses on the implementation and operationalisation of the R-Map model, including the steps taken 

to translate the conceptual framework into a functioning statistical model. Section 6 offers a critical reflection 

on the model’s outcomes, evaluating its scientific contribution, practical strengths, and acknowledging 

potential limitations and challenges in its application. Finally, Section 7 concludes the report by summarising 

the main findings and providing an outlook on future research directions and planned follow-up activities.  
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2. Methodology - Conceptual model development (Task 2.1) 

Section 2 reports on the methodology applied in Task 2.1. The objective of Task 2.1 is, in short, to conceptually 

develop the R-Map model as an integrated assessment model of remote working impacts. The basis for the 

model development is the literature review and expert consultation conducted in WP1 and the experiential 

knowledge of the entire R-Map consortium, the advisory board members and other invited experts. The 

methodological approach we choose is a participatory model-building approach using causal mapping 

methods embedded in a co-design process.  

The section starts with a review of participatory causal mapping methods for integrated assessment (section 

2.1). Section 2.2 summarizes the overall methodologic approach to the task and provides conceptual 

definitions and the key terminology. Section 2.3 reports the implemented co-design process. 

 

2.1 A review of causal mapping methods for integrated impact 

assessment  

In this section, we elaborate on the different causal mapping methods that can be utilized for integrated 

impact assessment. We discuss the most relevant methods with respect to the co-design of the R-Map 

integrated impact assessment model.   

A causal diagram that represents cause-effect relationships within a system helps in understanding a certain 

phenomenon, e.g. impacts of remote working arrangements (Cunningham, 2021). Developing such a diagram 

requires integrating expertise derived from multiple sources, including theory, scientific models, expert input, 

personal observations and experiences, evidence from literature, intuition, and hypothesizing. As emphasized 

by Pearl & Mackenzie (2019), data alone cannot establish causality within a system; causal inference relies on 

constructing a causal diagram to examine the relationships of cause and effect within a system or 

phenomenon. Pearl (2009) specifically refers to directed acyclic graphs (DAGs), often used to structure 

Bayesian Networks and counterfactual analysis.  

The co-design approach (Section 2.3) that is aimed at, in this task emphasizes the importance of participatory 

methods for constructing causal maps, involving experts and stakeholders to collectively identify system 

components and relationships. Participatory causal mapping encompasses a range of methods, from 

qualitative to quantitative, including Causal Loop Diagrams, Participatory System Mapping, Fuzzy Cognitive 

Mapping, and Bayesian Belief Networks. These methods are sometimes referred to as mind mapping, cognitive 

mapping, system mapping, or causal diagrams (Barbrook-Johnson & Penn, 2022).  

As Barbrook-Johnson & Penn (2022) highlight, causal mapping techniques can be viewed as methods that help 

produce simplified models composed of a set of elements, the relationships between them, and the system 

boundaries being examined. Some approaches, like Causal Loop Diagrams, Participatory System Mapping, and 

Fuzzy Cognitive Mapping, prioritize a system-wide perspective. Others, such as Bayesian Belief Networks 

(BBNs), focus more explicitly on designing and assessing interventions. Methods also vary in their level of 

quantitative analysis and ease of stakeholder participation. Figure 1 below illustrates how different system 

mapping techniques can be positioned based on their degree of quantification and the ease of participant 
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involvement. In practice, often a combination of system mapping methods is used to address a particular 

question. 

 

Figure 1: The different system mapping methods, adapted from Barbook-Johnson and Penn (2022) 

 

In the following, we provide a brief overview of selected methods—Causal Loop Diagrams, Participatory 

System Mapping, Fuzzy Cognitive Mapping, and Bayesian Belief Networks—which are particularly relevant for 

the development of the R-Map model. These methods strike a balance between qualitative and quantitative 

approaches, enabling maximum co-creation while maintaining a high level of quantitative sophistication. By 

combining methods in a causal mapping exercise, we can secure broad inputs without compromising analytical 

rigor. These methods are presented in their increasing quantitative sophistication, moving from qualitative to 

quantitative approaches. For each method, we highlight its respective strengths and weaknesses, forming the 

basis for our selection criteria and linking the problem to the most suitable approach, as detailed in section 

2.2. An overview of additional methods, such as Rich Pictures, Theory of Change, and other system mapping 

techniques, can be found in Barbrook-Johnson and Penn (2022). 

Before delving into the methods, we introduce and define the common components of causal maps, as 

represented in Figure 2. 

Network: A network consists of nodes (boxes) connected by edges (links). In causal system maps, these edges 

are typically directed, meaning they take the form of arrows pointing from one node to another 

Nodes: These represent the key elements or variables in the system being analysed. These are the boxes within 

a network where edges meet. 



 

Page 19 of 110 
 
D2.1: The R-Map model (v2), 31/03/2025 

GA 101132497 
 

Links (a.k.a. edges): These are the connections or relationships between nodes, visualized as lines or arrows 

that indicate causality or influence 

 

Figure 2: Components of a causal map – the network formed of nodes and (directed) links 

 

2.1.1 Causal Loop Diagrams 

Causal Loop Diagrams (CLDs), rooted in the System Dynamics approach to simulation modelling, are tools for 

visualizing and analysing the interdependencies and feedback dynamics within a complex system (Penn et al., 

2013; Sterman, 2000). They are situated roughly in the middle of the qualitative-quantitative spectrum of 

causal mapping methods (Figure 1), leaning more towards the qualitative side. They provide insights into the 

dynamics of a system, with a particular focus on feedback loops as a central component and organizing 

structure for complex systems. Due to their emphasis on feedback loops and the strict use of variables for 

nodes, CLDs are a natural stepping-stone to simulation methods such as stock-and-flow diagrams and system 

dynamics (Barbrook-Johnson & Penn, 2022). 

At the core of a CLD are nodes, which represent variables or system elements, arrows that depict causal 

relationships between them, and feedback loops (as depicted in Figure 3). The boxes, or nodes, can be 

anything that makes sense to consider as increasing or decreasing along a scale. Each arrow indicates the 

direction of influence, with a "+" signifying a positive relationship (where both variables increase or decrease 

together) and a "−" representing a negative relationship (where one variable increases while the other 

decreases, and vice versa). These relationships intertwine to form feedback loops, which can be classified as 

either reinforcing loops (R) that amplify changes through positive feedback or balancing loops (B) that stabilize 

the system through negative feedback. In a reinforcing loop, change in one direction is compounded by more 

change. For example, money in a savings account generates interest, which increases the balance in the 

savings account and earns more interest. Balancing loops, in contrast, counter change in one direction with 

change in the opposite direction. Balancing processes attempt to bring things to a desired state and keep them 

there, much as a thermostat regulates the temperature in a house.   
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Figure 3: Components of a Causal Loop Diagram (CLD): nodes, links and feedback loops 

 

An example relevant to R-Map is the relationship between the number of hours spent working remotely (used 

here as a working definition of Remote Work Arrangements, or RWAs) and polycentricity, as illustrated in 

Figure 4. A positive relationship can be mapped, where increased hours of remote work enhance the likelihood 

of individuals relocating or engaging in activities across multiple localities (multilocality). These immediate 

outcomes, in turn, may contribute positively to the emergence of new centres and the process of 

decentralization, collectively referred to as polycentricity. However, unlike causal loop diagrams (CLDs), which 

primarily emphasize feedback loops, this example does not include such a loop. The components integrated 

from various methods, including CLDs, will be discussed later in accordance with our specific requirements. 

As Barbook-Johnson and Penn (2022) highlight, CLDs can be constructed in a participatory manner, where 

discussions during workshops serve as data. However, due to the rigour required to focus on a system’s 

feedback loops in a participatory setting, decisions are often made by the modeler or researcher. On the 

downside, Causal Loop Diagrams (CLDs) can be limiting due to their strong emphasis on feedback loops, which 

can concentrate a lot of power in the hands of the researcher, particularly during the creation of these loops. 

If feedback loops are not present or significant in the examined system, this method may be less effective. 

Additionally, being positioned in the middle of the qualitative-quantitative spectrum means that CLDs do not 

provide any quantitative analysis. As a result, without quantitative data, it can be challenging to meaningfully 

understand how multiple feedback loops will interact. 
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Figure 4: Example of a causal chain in the R-Map model and positive relationships between factors 

 

2.1.2 Participatory System Maps 

Participatory System Maps (PSMs) are causal models of a system represented by a network of factors and their 

causal relationships (Barbrook-Johnson & Penn, 2022). These maps are typically annotated and layered with 

detailed information about the factors and their connections. Technically, PSMs are directed cyclic graphs, 

meaning that the connections between factors are represented by directed arrows and feedback loops can 

exist within the network. The maps are developed by stakeholders, usually through a series of workshops and 

meetings, with the participatory nature of their creation being of utmost importance. The analysis approach 

also relies heavily on stakeholder input, network analysis principles, and an examination of the ‘flow’ and 

chains of causal relationships—often referred to as ‘causal flow’, thereby creating submaps focused on 

exploring specific questions or purposes in a highly participatory and iterative manner, which are brought 

together to create larger maps at times. The nodes in the map are referred to as factors. They can come from 

any relevant domain; they do not need to be explicitly quantifiable or supported by data, but they should be 

expressed as variables, i.e. elements in the system that can increase or decrease. There are often special types 

of factors, such as outcomes or functions of the system that are of interest, or interventions that can be 

controlled. The connections in the map represent causal relationships, which can be positive (i.e., if A increases 

or decreases, B changes in the same direction), negative (i.e., if A increases or decreases, B changes in the 

opposite direction), or uncertain/complex (i.e., where causal relationships depend on other factors or 

contexts, or where the relationship is strongly nonlinear). PSM are in the middle of the spectrum between 

flexible and qualitative methods such as rich pictures and theory of change, and more formal quantitative 

methods, such as Bayesian belief networks and system dynamics. They are likely to work best when using 

systems mapping in a participatory and flexible manner, but with a structure given by clear definitions of how 

the model works and how it can be analysed. The main steps in the process involve deciding on the aim of the 
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project, defining the system boundary, stakeholder selection, process design, selecting focal and general 

factors, building the map, collecting factor and connection information, and validating the links. After the 

causal map is developed, these insights can be transitioned into a more quantitative model, which can then 

be further enhanced using data-driven indicators. 

  

2.1.3 Fuzzy Cognitive Mapping 

Fuzzy Cognitive Mapping (FCM), developed by Kosko (1992), is a semi-quantitative tool that integrates 

cognitive mapping and fuzzy logic to model and analyse complex systems. It is particularly effective for 

studying systems characterized by uncertainty, vagueness, or incomplete data, where interdependencies exist 

but are not empirically defined and bridges the gap between qualitative knowledge representation (Penn et 

al., 2013). FCMs are particularly useful in participatory settings, as they allow stakeholders to integrate diverse 

forms of knowledge, experiences, and perceptions into a single coherent model. FCM enables the construction 

of causal maps, where system components (nodes) and their relationships (edges) are represented. 

Participants collaboratively identify key system components, define relationships, and assign weights to 

capture both the causal structure and the relative importance of variables. These relationships are weighted 

on a scale from -1 to +1, indicating the strength and direction of influence. 

FCMs are used to identify dominant drivers, feedback loops, and system behaviours under different scenarios. 

Nodes represent factors that can vary in magnitude (e.g., increase or decrease), while edges indicate causal 

links. Relationships may not require empirical data, making FCMs ideal for exploratory analyses. A 

distinguishing feature of FCMs is their focus on generating outputs that support scenario testing and 

projections or facilitating stakeholder discussions. This capability makes FCMs highly versatile for applications 

such as environmental management, policy analysis, urban planning, and risk assessment (e.g. Reckien et al. 

2014). 

As Barbook-Johnson and Penn (2022) highlight, there are two main approaches in FCM – causal and dynamic 

ones. The causal approach retains the original FCM framework, where link weights represent certainty in 

causal relationships. Factor values range from 0 to 1 (or sometimes -1 to 1), indicating the degree of activation 

or causation. For instance, a factor value of 1 suggests complete activation, while 0 indicates no activation. 

Edges reflect certainty about causation, with stronger magnitudes implying greater confidence. This approach 

answers questions like: “If we change one factor, how confident are we that other factors will change?” The 

dynamical approach focuses on how changes propagate through the system, producing dynamic 

representations of relative changes in factor values. Factor values, often any real number, reflect the 

magnitude of an effect, while edge weights (-1 to +1) represent the strength of influence. The model tracks 

system behaviour iteratively until factor values stabilize or form repeating cycles. This approach helps identify 

the most influential factors and how structural changes affect system dynamics. Both approaches use edge 

values to reflect the strength of causal relationships, but their interpretations differ. The causal approach 

emphasizes certainty in causation, while the dynamical approach examines the propagation of effects. In 

summary, FCM provides a flexible framework for exploring complex systems, accommodating uncertainty and 

facilitating participatory analysis. FCM has been used in a variety of different scenarios, including exploration 

of future scenarios of deforestation in the Amazon (Kok, 2009) and bio-based economy for the UK Humber 

region (Penn et al., 2013). 
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2.1.4 Bayesian Belief Networks 

Bayesian Belief Networks (BBNs) are suitable for developing probabilistic causal models (Barbrook-Johnson & 

Penn, 2022). Like other methods, BBNs consist of nodes (representing variables, factors, or outcomes in a 

system) and edges (depicting the causal relationships between these nodes). Each node has defined states 

(e.g., on or off, high or low, present or absent) with associated probabilities of being in each state. These 

probabilities are determined based on the states of the connected nodes, which have causal arrows pointing 

toward them. In probabilistic terms, nodes are 'conditionally dependent' on the states of the nodes with which 

they share a causal connection. A key distinction of BBNs is their acyclic nature—arrows flow in only one 

direction, and no cycles or feedback loops are present. This sets them apart from other methods, such as 

Causal Loop Diagrams and Participatory System Maps, which incorporate cycles and feedback mechanisms. 

BBNs are directional probabilistic graphical models that model conditional dependence through directed 

edges, and conditional independence through missing linkages (Pearl, 2014). Using Bayes' theorem, BBNs 

address problems in complex systems by representing joint probabilities for the factor states in a model. The 

term "belief" reflects the subjective specification of probability distributions and relationships, distinguishing 

Bayesian probability from the frequentist approach, which relies on observed event frequencies. 

We can define three types of linkages and nodes based on network positions (Pearl & Mackenzie, 2019) which 

are useful for identifying control variables in multivariate regression analyses. This helps satisfying the "back-

door criterion", i.e. blocking all non-causal paths two variables of interest, and prevents overestimation, 

underestimation, or spurious correlations (Cunningham, 2021). The linkage types are as follows: 

 

Fork linkage: 𝑎 ← 𝑏 → 𝑐 

Collider linkage: 𝑎 → 𝑏 ← 𝑐 

Chain linkage: 𝑎 → 𝑏 → 𝑐 

 

In a fork linkage, factor b acts as a "confounder," and controlling for it makes a and c independent. In a collider 

linkage, b is a "collider," representing a common effect, and controlling for it can create spurious correlations. 

In a chain linkage, b is a "mediator" that can potentially be excluded from the model to simplify it, as it does 

not independently cause changes.  

For instance, in the R-Map framework, consider a causal chain like the one discussed in Section 2.1.1, linking 

RWAs to polycentricity, with two additional factors influencing relocation. Figure 5 illustrates this acyclic 

structure, where nodes are assigned binary states (e.g., high/low) and conditional probabilities. The table 

accompanying the diagram displays the probabilities of polycentricity states as influenced by its two parent 

nodes—relocation and multilocality. 

This BBN can be employed in two ways: 

1. Downstream analysis: Changing the states of specific factors to simulate hypothetical scenarios and 

observing their impact on downstream nodes. For example, with high relocation and multilocality 

levels, there is an 80% probability of observing high polycentricity and a 20% probability of low 

polycentricity. 
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2. Upstream analysis: Investigating the probable states of contributing factors that lead to a specific 

outcome. For instance, analyzing the likelihood of different relocation and multilocality states that 

result in high polycentricity. 

  

 

Figure 5: Example of a Bayesian Belief Network implementation in R-Map 

 

While BBNs are highly versatile, they have certain limitations. Their acyclic nature prohibits feedback loops of 

any length, a constraint necessary for the mathematical calculations to remain valid. However, in complex 

systems where feedback loops are often key drivers of dynamics, this limitation can be partially addressed 

through "dynamic" BBNs, which represent the same variable at different time points using multiple nodes. 

Despite this constraint, BBNs offer flexibility by incorporating broader system elements through conditional 

probabilities during map construction and analysis, even if these elements are not explicitly included in the 

network. This capability enhances their value, even when the network does not capture all potential factors. 

Additionally, a significant strength of BBNs is their ability to update probabilities as new data or evidence 

becomes available, making them particularly effective for adaptive analyses in dynamic and evolving systems. 

 

2.2 Methodological approach and terminology 

2.2.1 Methodological approach 

The development of the R-Map model fulfils all 4 aspects that Penn et al. (2013) describe as the main 

characteristics of problems where causal mapping methods can help:  
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(1) when stakeholder behaviour and decisions are pivotal to a system’s development,  

(2) when detailed local knowledge is available but scientific data is lacking, 

(3) when addressing complex ‘wicked’ problems with no definitive solutions, and 

(4) when public or stakeholder participation is desirable or necessary. 

The review of RWAs and their impacts conducted in WP1 of the R-Map project (D1.1 to 1.4) revealed that 

decisions and behaviour of stakeholders, e.g. policy makers, are crucial to how impacts play out in certain 

contexts. WP1 further showed that detailed knowledge of impacts is available across Europe and beyond, but 

scientific data and insights are limited to single case studies, often conducted in one region or country. The 

variety of impacts across these diverse case studies and contexts is a key indication of the wickedness of the 

problem next to its multi-disciplinary nature. This wickedness in turn requires the strong involvement of 

multiple stakeholders to address the challenges of impacts from RWA.  

Based on the pros and cons of the different causal mapping methods elaborated above we conclude to use a 

Participatory Systems Mapping approach organized as a co-design process to develop the R-Map model. The 

PSM approach suits the iterative engagement of the R-Map consortium and other experts in the development 

of the R-Map model in a series of workshops. The given structure of workshops ensures a result within the 

limited time frame. The qualitative nature of PSM enables the contribution of stakeholders to the model 

despite the lack of data to quantify factors. Moreover, it retains critical details and serves as a foundation for 

transitioning to a more quantitative method—in this case, using a Bayesian approach (see section 5). The 

Bayesian setup allows us to address uncertainties in inferences and effectively manage missing variables 

through its probabilistic framework. A detailed description of the co-design research process is provided in 

section 2.3. 

 

2.2.2 Terminology 

For the participatory systems mapping approach embedded in a co-design process, we agreed on the following 

terminology.  

The conceptual R-Map model is represented by a network of factors and their causal relationships. Factors 

included in the R-Map model need to fulfil the following characteristics (Table 2). 
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Table 2: Characteristics of Factors 

Factors Examples 

Specific and measurable 
In contrast to themes such as 'technology,' factors are more precise 

and measurable, like 'broadband access' or 'technological literacy' 

Elements that are either 

influenced by remote work or 

have the potential to impact 

other factors influenced by 

remote work 

Since the objective of this exercise is to examine the impact of 

remote working arrangements, the focus is on factors like 'employee 

productivity' rather than drivers like 'internet quality'—unless they 

also represent outcomes 

Elements that can increase or 

decrease in value due to other 

factors or over time 

Demographic variables such as 'age' and 'gender' are constants and 

do not qualify as impact factors. They will most likely be included as 

control variables 

Preferably neutral, without 

indicating a positive or negative 

shift 

Instead of using distinctions like 'formation (or reduction) of new 

social ties' it is more appropriate to use neutral terms like 'social 

ties', 'social network' or 'support network' 

Continuous or categorical with 

multiple categories 

We avoid binary categories since they provide limited utility for 

modelling. For example, 'gender equity' is a more useful factor than 

simply 'gender.' 

Ideally, state variables, not 

events or processes 

Similar to stock variables, factors represent states that can increase 

or decrease over time; they are not 'events' (which are one-time 

occurrences) or processes (like 'gentrification'). A process like 

gentrification is better analysed through specific state variables such 

as 'real estate prices' or 'net migration of communities.' 

Relevant to the focus of the 

study 

In this exercise, factors are relevant if they are significantly 

influenced by remote working arrangements or are sensitive to 

them. While gentrification might be an interesting phenomenon to 

study, unless there is substantial evidence or rationale to include it, it 

may fall outside the scope of this analysis 
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Factors can represent spatial as well as social or economic impacts of RWA. During a first screening of all 

potential factors as suggested in WP1, it became clear that some factors are rather suited to affect the 

implementation of RWA (such as digital infrastructure) while others are rather affected by the implementation 

of RWA (e.g. health impacts). To represent this distinction, we distinguish between drivers and impacts (see 

Figure 6).  

Factors may occur as impacts that are affected by certain RWA (e.g. Health and Wellbeing) as well as drivers 

that affect the implementation of certain RWA (e.g. Digital Infrastructure Accessibility). For the sake of 

conceptual clarity, we separate in the conceptual R-Map model drivers from impacts as depicted in Figure 6.  

 

 

Figure 6: Separation of drivers and impacts 

 

While drivers affect RWA directly and are mutually independent, factors are represented in the R-Map model 

as a network with causal relationships between them. The network of impacts results in cause-effect 

relationships between various impacts that can include mediating factors (mediators), confounding factors 

(confounders) and collider factors (colliders). A mediator is a factor that does not independently cause any 

change to other factors, confounders are factors that influence both the dependent variable and independent 

factors, and colliders are factors that are common effects in a specific causal chain (see Figure 7). Section 3.3.5 

provides examples of causal chains in the R-Map conceptual model. 
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Figure 7: A factor acting as a a) confounder, b) collider and c) mediator depending on the network position in the map 

 

The causal relations between the impacts are represented as links. These links can represent certain strengths 

of relation between two factors (weak, medium, strong relation), they can represent a positive (if factor A 

increases, factor B also increases) or a negative (if factor A increases, factor B decreases, and vice versa) 

relation, and they represent a relative temporality of the relation between two factors, i.e. these relations 

may occur either at short, medium or at the long term. 

As discussed above, the impacts of RWA might differ in different contexts and constellations and vary if studied 

for certain sociodemographic groups or economic sectors. Impacts further differ concerning the specific RWA 

arrangements implemented. All these aspects are strictly speaking not part of the R-Map model but represent 

the so-called control variables that the R-Map model is to be checked for. A classification of typical control 

variables is provided in Table 3. 

  



 

Page 29 of 110 
 
D2.1: The R-Map model (v2), 31/03/2025 

GA 101132497 
 

Table 3: Classification of Factors 

Factors Definition Example 

RWA 

Metrics of professional working 
that takes place outside the 
office/workspace with the use of 
IT technology 

The amount of time working 
remotely.  

Branches/economic sectors 
Single economic sectors having 
potentially specific RWAs  

Industrial branches, services, 
education and training, etc.  

Contextual factors 
Spatial variations in impacts 
attributed to characteristics of the 
built and social environment 

Urban or rural areas, countries, 
population density, etc.  

Compositional factors 

Differences in the composition of 
a group/region in terms of 
individual socioeconomic status or 
behaviour 

Gender, age, income levels, 
household characteristics, etc. 

 

2.3 The R-Map model co-design process 

As outlined above, the goal of the co-design process is to (i) synthesize the knowledge produced in WP1 to 

arrive at a common understanding of the urban/ rural divide, (ii) define the spatial, economic and social 

dimensions of the urban-rural divide in the context of R-Map, (iii) select the key spatial, social and economic 

factors of the urban/ rural divide that are affected by remote working arrangements in the different regions 

and (iv) assess and semi-quantify these factors in terms of their importance drawing on expert knowledge and 

geographic context. In WP1 of the R-Map project, partners reported relevant impacts of remote working 

arrangements from broad literature reviews and expert interviews focusing on the social, spatial, and 

economic aspects of RWA that serve as input to the co-design process.  

The co-design of the R-Map model is set forth through a series of workshops involving the consortium partners 

(UT, AUTh, UB, KU, SEERC, SURREY, RIM, Q-PLAN, WR, ARX), members of the advisory board of the projects, 

and other regional and domain-specific experts. The sequence of workshops includes one full-day physical 

workshop at the University of Twente with all consortium partners, the advisory board members and invited 

experts, three online workshops with the consortium partners, and a virtual validation workshop again with 

the advisory board, domain/ regional experts and potential users to present the results of the co-design 

process and seek feedback. In between the workshops, we sought additional input from partners via a survey 

and a request to revise and comment on factor definitions.   
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Figure 8: Schematic overview of the co-design process 

 

2.3.1 The Co-design workshop at UT 

The starting point of the development of the R-Map model was the one full-day co-design workshop at the UT 

with all consortium partners, AB members and invited regional and domain experts (see the full list of 

participants in Annex 1). The co-design workshop was conducted on September 4, 2024, at the UT in Enschede, 

the Netherlands.  

The purpose of the workshop was to identify relevant factors from the reports of WP 1 and the experiential 

knowledge of all participants, to get acquainted with and practice the participatory system mapping method, 

and to draft relations between selected factors as a basis for the R-Map model. WP1 task leaders were 

requested to identify and present the ten most important factors from their studies as input to the workshop. 

The workshop was structured into two main steps (see Figure 9). The first step focused on knowledge 

synthesis, which involved the integration of scientific and experiential knowledge and the discussion of 

relevant factors. The second step introduced participatory systems mapping in groups to start the conceptual 

design of the R-Map model. 

The workshop structure is described in Figure 9. The host's presentation outlined the exercise's objective, 

explained the terminology and methodology (see section 2.2), and described the tasks. Following this, each 

task leader (Task 1.1 to Task 1.4) presented their identified factors, after which participants were assigned one 

or two factors each. These factors were written on colour-coded cards, with each colour representing the 

various dimensions covered by the task leaders. The assignment of factors to participants was based on 

participants’ expertise. The participants were then paired with someone with the same-coloured card to 

discuss and reflect on their factors in line with the host’s instructions. This pairing promoted domain-specific 

discussions. Then, participants were distributed into mixed groups of 7 to 8 people across four tables, with an 
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additional table for three online participants. The distribution ensured a balanced representation of 

participants from different backgrounds at each table. The task of this step was to discuss and refine, if 

necessary, the factors and add eventually missing factors in cross-disciplinary discussions. Once the factors 

were established across all tables, a joint plenary session was held to review the factors and eliminate 

redundancies. The participants then voted on the factors, ranking them based on their relevance to the 

project. Each participant had five votes to allocate. The top 15 factors, based on the voting results, were 

selected for the next stage of the exercise, where links were drawn between the factors. This process helped 

maintain manageability by limiting the number of links. In the final stage, participants, divided into the same 

breakout groups, used the selected 15 factors to draw causal directional links, redefining, omitting, or adding 

factors where necessary. The maps generated during the workshop are provided in the Annex (Annex 4, 

Figures 1 to 5). The criteria used to define factors are explained in section 2.2 (Table 2). 

 

 

Figure 9: Workflow of the co-design workshop 

 

2.3.2 First technical workshop 

The purpose of the first technical workshop, conducted at the end of September 2024 online, was to 

consolidate and reflect on the results achieved in the co-design workshop at UT. Members of all consortium 

partners participated in the workshop. In preparation for the first technical workshop, the UT team rephrased 

a few original factors based on the results from the co-design workshop and started defining relevant factors 

that were identified through the voting at the co-design workshop.  

First, the results from the participatory mapping exercise conducted in groups at the UT were presented and 

discussed. Part of the discussion was the rephrasing of single factors in line with the agreed characteristics of 

factors. Second, a consolidated network map of impacts that integrated the results from the 5 groups was 
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presented. This integrated map served to discuss once again the distinction between drivers and impacts as 

well as the role of confounding and mediating factors in the R-Map model. Further various options to visualize 

the R-Map model were discussed.  

At the end of the workshop, partners were asked to comment on the definitions of factors before the next 

workshop.  

 

2.3.3 Second technical workshop 

The purpose of the second technical online workshop, conducted in October 2024, was to finalize the selection 

and definition of factors included in the R-Map model and to focus on the participatory mapping of causal 

relations between factors. Members of all consortium partners participated in the workshop.  

The final list of factors to be included in the R-Map model was presented in the workshop and approved by all 

partners. This final list resulted from the previous discussions and the comments of partners on definitions 

and rationale of factors. The second part of the workshop focused on the causal relation between factors. The 

already mapped relations were reviewed, and a few new ones were added. Also, a new visualization of the R-

Map model, that presents impacts according to their temporality (short vs. long-term impacts) and their 

degree of aggregation (aggregated vs. disaggregated impacts) was discussed. Disaggregated impacts cause 

effects that are experienced on an individual or household level while aggregated effects occur at a region 

level.  

To obtain detailed insights on the relevance and nature of causal relations between factors, the UT team set 

up a survey that asks to indicate the strengths (weak, medium, strong), temporality (short, medium, long-

term), and directionality (positive, negative) of each already mapped link. Each R-Map consortium partner was 

asked to answer one survey before the next workshop, resulting in a sample of 10 answers.  

 

2.3.4 Third technical workshop  

The purpose of the third technical online workshop was to discuss the results of the partner survey on the 

relevance and nature of causal relations between factors and to finalize the conceptual design of the R-Map 

model. Members of all consortium partners participated in the workshop.  

10 partners had answered the survey on causal relations between factors. The following characteristics of the 

relations were analysed through the survey 

• Degree of Consensus on Causal Relationship: Does Factor A cause a change in Factor B? 

• Strength of Causal Relationship: What is the strength of the relationship between Factor A and B? 

• Type of Causal Relationship: Does an increase in Factor A cause an increase in Factor B? 

• Temporality of the Relationship: How long does the relationship take to realize? 

Overall, the results of the survey confirmed many of the assumed relationships. Further, a large degree of 

agreement between partners regarding the cause-effect relations of impacts from RWA was found.  
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The final part of the third workshop focused on the revision of the R-Map model based on the results of the 

partner survey. Single relations were removed due to a low level of agreement on the relevance or direction 

of the relations or a large degree of uncertainty.  

2.3.5 Validation workshop with experts and advisory board members 

The purpose of the validation workshop was to present the ongoing conceptual development of the R-Map 

model to experts outside the R-Map consortium and to obtain feedback on the relevance and significance of 

the results obtained. Next to the consortium partners, the validation workshop was attended by some advisory 

board members and three representatives of the sister project WinWin4WorkLife 

(https://winwin4worklife.eu). As input to the discussion the entire co-design process and results obtained 

were presented. The focus of the presentation was on the identified factors, the results from the partner 

survey, and the draft conceptual R-Map model.  

The overall outcome of this validation was a large degree of confirmation of the results and findings from the 

co-design process. The advisory board members confirmed that their expectations raised during the co-design 

workshop at the UT were overall met. The members of the sister project stated that they work on their project 

with a very similar set of factors they consider relevant. Upon their recommendation, one additional factor 

(relocation) was added to the set of factors which makes a specific cause-effect chain in the R-Map model 

much better understandable to others.  

 

  

https://winwin4worklife.eu/
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3. The conceptual R-Map model 

The section elaborates on the result of the co-design of the R-Map model. In section 3.1 the knowledge and 

insights collected in WP1 are summarised. Section 3.2 provides a detailed discussion of the selected factors 

included in the R-Map model while section 3.3 elaborates the conceptual design of the R-Map model. Section 

3.4 finally looks into the transition to Task 2.2 where the conceptual R-Map model is going to be implemented.       

 

3.1 Knowledge synthesis from WP1 

WP1 of the R-Map project focused on "setting the scene" by examining the current state and prospects of 

remote working arrangements (Task 1.1), analysing the spatial effects of RWA across the EU and specific 

regional case studies (Task 1.2), assessing its impacts on working and living conditions (Task 1.3), and gaining 

a deeper understanding on potential socio-economic effects of RWA (Task 1.4). Key outcomes were 

summarized in reports (Deliverables 1.1 to 1.4), which are briefly summarized below. Following this, we 

highlight the key impact factors proposed by each partner as inputs for Task 2.1. 

 

3.1.1 Deliverable 1.1: Current status and emerging trends of remote working 

arrangements in Europe and beyond 

Deliverable 1.1 outlined that the nature of work is transforming as traditional offices give way to flexible 

environments like homes, co-working spaces, and informal settings. This shift, accelerated by COVID-19 and 

technological advancements, expands the global talent pool but also highlights disparities in access to remote 

work. These disparities stem from factors such as labour policies, infrastructure, digital skills, and 

socioeconomic development, with rural areas and less developed economies lagging compared to urban 

centres. The key findings are listed below.   

- Infrastructure and Skills Gaps: Rural areas often lack digital infrastructure and skilled human capital, 

limiting their participation in remote work. 

- Policy Disparities: While many EU countries have similar remote working policies, differences in 

governance, implementation, and protections of employees (e.g., health, safety, and privacy) persist. 

An effective monitoring of the governance and implementation of remote working arrangements is 

considered essential. 

- EU Digitalisation Goals: Regional disparities in infrastructure and technology hinder the EU’s vision of 

a unified digital market and digital sovereignty. 

- Stakeholder Consensus: Remote work is here to stay, requiring clear legal frameworks and inclusive 

policies addressing rights, safety, and costs for remote workers. 

- Corporate and Cultural Impacts: Remote work is reshaping corporate culture, managerial styles, and 

internal policies, underscoring the need for further research into its long-term effects. 
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3.1.2 Deliverable 1.2: Spatial implications of remote working arrangements across 

Europe and beyond 

Deliverable 1.2 examined how the shift to remote work is reshaping urban and rural landscapes, influencing 

housing preferences, mobility patterns, energy use, and spatial dynamics. It focused on the driving factors 

behind new working spatialities, with an emphasis on place-based policies and insights from case studies and 

local actor interviews to contextualize regional impacts. The key findings mentioned are:  

- Emergence of New Working Spatialities: Remote work has led to the rise of coworking spaces, digital 

hubs, and multilocality (operating across multiple locations). These trends are reshaping urban 

development, land use, real estate, mobility, social interactions and community dynamics. 

- Urban and Rural Transformations: Urban centres, particularly central business districts, are declining, 

while suburban and peri-urban areas are experiencing growth, revitalizing smaller cities. Housing 

demand is shifting towards suburban and rural areas with more space and better living conditions, 

reflecting changing preferences. 

- Urban-Rural Dynamics: Remote work can either bridge or widen the urban-rural divide, depending on 

how well opportunities are integrated into local economies and supported by policies. 

- Mobility:  Changes in commuting patterns (decrease of daily commute, longer commutes, altered 

peak hours etc) have been observed due to increased remote work. 

- Remote work's environmental impact is mixed: reduced commuting emissions are potentially offset 

by higher home energy use, raising sustainability concerns. 

 

3.1.3 Deliverable 1.3: Potential effects of remote working arrangements on the 

working and living conditions 

Deliverable 1.3 findings revealed that remote work impacts workplace dynamics, living conditions, individual 

health and well-being. Organizational factors, such as engagement, satisfaction, and workplace culture, are 

explained to be closely tied to mental health which requires careful monitoring. The key findings are listed 

below: 

- Workplace Dynamics and Well-being: Remote work can foster detachment from workplace culture, 

widening gaps between remote and on-site employees. 

- Living Conditions and Family Dynamics: Altered relationships with environmental factors and service 

access affect living conditions. Caregiving responsibilities and gender norms heavily influence remote 

work experiences, with women often struggling more to balance work and caregiving. 

- Work-Life Balance and Health: Remote work improves flexibility, reducing stress and fatigue, but 

extended working hours can offset the benefits of reduced commuting. Positive health behaviour (e.g., 

physical activity, diet, and sleep) is susceptible to blurred work-life boundaries, risking harmful habits. 

Organized remote work can improve mental health and behaviour but risks isolation and loneliness. 
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3.1.4 Deliverable 1.4: Understanding the potential socio-economic effects of 

remote working arrangements 

Deliverable 1.4 details that many organizations are already advanced in implementing remote work, though 

differences exist between the public and private sectors and between large employers and SMEs. Remote 

work often shifts certain costs to employees, intentionally or unintentionally, and its benefits and drawbacks 

are unevenly distributed based on characteristics like gender, age, caregiving responsibilities, and home 

location. Emerging trends, such as digital nomadism remain underexplored, particularly regarding challenges 

like taxation and social security, which are amplified in cross-border contexts. The key findings are mentioned 

below under the categories of social, economic and socio-economic impacts:  

1. Social Impacts: Gender and Age – Women gain flexibility but face higher stress and mental health 

challenges. Younger workers struggle with performance; older workers need telework training and 

gradual adaptation. Social isolation and unsuitable workspaces impact older workers’ well-being. 

Work-Life Balance – Flexible hours support family life but blur work-home boundaries, reducing focus 

and productivity. Balancing professional responsibilities with childcare can be stressful. 

Social Network – Social isolation is a significant concern due to remote work impacting productivity, 

performance and well-being 

2. Economic Impacts: Tax, Social Security, Pension, Salary parity and Insurance – Equitable pay models 

updated social security, and insurance policies for remote-specific risks (e.g., ergonomic injuries and 

cybersecurity) are essential. 

Property Market – Remote work drives suburban and rural housing demand and land values, reducing 

urban office use and land values in city centres. 

3. Socio-economic Impacts: Transport and Accessibility – Reduced commuting lowers costs, stress, 

emissions, alleviates congestion and boosts gender equity and inclusivity for individuals with 

disabilities 

Regional Development: Decentralization supports smaller cities, boosts local economies, and 

enhances employment resilience. 

3.1.5 Factors suggested by Del. 1.1 to 1.4 for UT co-design workshop 

Each WP1 partners responsible for a Deliverable (1.1 to 1.4) was asked to suggest approximately 10 most 

important factors, i.e. the most relevant impacts from remote working arrangements, as input to the co-design 

workshop. The identified factors are shown in Table 4. 
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Table 4: Key factors identified by WP1 task leaders as input to the UT co-design workshop 

Task/Deliverable Suggested Factors 

1.1 
Remote work index; legal inadequacy; connectivity; internet speed; internet quality; 
affordability of internet; digital skills; cost of living; good life enablers; gender 
distribution; seniority 

1.2 
City size; suburbanisation; multilocality; urban decentralisation; land consumption; 
land-use change; gentrification; urban-rural divide; transport; local infrastructure 
stress; energy demand 

1.3 

Wellbeing and mental health; precarity level; autonomy; non-attachments degree; 
sustainable occupational health and safety services in RWA; flexibility types; 
household dynamics-related burden; work-life balance; presenteeism; workplace 
loneliness; level of inequalities; level of accessibility; RWAs literacy; awareness level; 
technological readiness; labour participation opportunities; work intensity 

1.4 
Gender; age; caring responsibilities; social network; property market; transport and 
accessibility; local tourism economy; insurance 

 

During the co-design workshop at the UT, these factors were discussed and revised in mixed groups with 

experts and advisory board members (co-design process step 1). The goal of the discussion was to agree on 

the set of factors in a wider group and to revise them according to the defined characteristics of factors (see 

Table 1 in section 2.2.2; see the revised list of factors that the group agreed on in Annex 2).     

 

3.2 Relevant factors in the R-Map model (Drivers and Impacts) 

As explained above, the R-map model distinguishes factors into drivers and impacts, with additional 

classifications as confounders or mediators based on their network position (see section 2.2). In the following, 

the final selected factors resulting from the co-design process are presented and discussed. The challenges of 

the co-design process were to capture the multitude and diversity of impacts resulting from remote working 

arrangements in the R-Map model, select the most relevant factors, and define the factors precisely to avoid 

any misconception. Another boundary condition of the co-design process was to agree on a limited set of 

factors (around 15 to 20 impacts) to be included in the R-Map model to achieve a workable model that allows 

quantifying impacts of RWA in Task 2.2.           

The factors and their classifications are further detailed in the following subsections. A list of factor definitions, 

which was utilized as a collaborative document for discussions, is provided in Annex Tables 3 and 4. 

3.2.1 Drivers 

The co-design process identified four key drivers of remote working arrangements: digital infrastructure 

accessibility, access to local amenities, transport accessibility, and taxation/social insurance regulations. 
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1. Digital Infrastructure Accessibility: the driver was initially suggested under internet quality (e.g. 

speed, bandwidth) and internet affordability by Del. 1.1 and revised and consolidated in the 

discussions during the co-design workshop. The factor captures the access to high quality (in terms of 

speed and coverage) and affordable internet. Citing Eurofound (2022), Task 1.1 identifies technical 

infrastructure (e.g., broadband accessibility) as a relevant driving factor which might explain variations 

in the prevalence of telework noted across different countries, and between urban and rural areas. 
 

2. Access to Local Amenities: The factor was added during table discussions in the co-design workshop 

by two groups who called it ‘access to local amenities and opportunities’ and ‘city facilities (transport, 

health care, amenities)’. It was merged into one factor during the plenary session and recognized as a 

significant factor during the voting process. Streamlining with a suggestion of Task 1.2, as to what all 

elements comprise amenities, the factor was finally understood as access to green areas, shopping, 

recreation, education, sports and community facilities, co-working spaces, etc. The factor is also 

understood to cover the dimension of quality of life incorporating the factor ‘good life enablers’, 

suggested by Task 1.1. 

 

3. Transport Accessibility: The impacts on transport and mobility from remote work were identified as 

significant by Tasks 1.2 and 1.4. However, during discussions in the co-design workshop, it was 

classified as a significant driver, which rather influences the relocation decision of employees and thus 

can be characterised as a driver of RWAs. It is understood as a measure of the ease of reaching (and 

interacting with) destinations or activities distributed in space. A place with "high accessibility" is one 

from which many destinations can be reached with relative ease. It also covers aspects of accessibility 

to work and travel time and costs. 

 

4. Taxation, Social Security, Insurance Regulations: This factor was originally suggested by Task 1.4, and 

emphasized by other partners during the technical workshops. This factor serves as a broad container 

term that encompasses economic drivers of RWA including taxation, social security, pensions, and 

insurance which play out differently in different contexts. The factor captures different regulations 

and laws governing how individuals and businesses are taxed, including income, sales, and corporate 

taxes, which are typically set at the country or regional level. The factor encompasses tax rate 

differences between countries, double tax arrangements, social security and insurance framework. As 

mentioned above, D1.1 elaborates that while many EU countries have similar remote work policies, 

differences in governance, implementation, and worker protections (e.g., health, safety, and privacy) 

persist, requiring effective monitoring. Further as elaborated in D1.4, remote work necessitates the 

development of new remuneration models that are equitable and motivating. Furthermore, insurance 

policies, originally designed for physical workplaces need to be updated to cover remote work 

environments, ensuring workers' rights and protection regardless of the work location. Due to its role 

as a policy lever, this factor is understood to be a driver. 
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3.2.2 Impacts of RWA 

As analysed in WP1, impacts of RWA occur across various domains. During the co-design process, the R-Map 

team agreed to distinguish spatial, social, economic and socio-economic domain impacts. The spatial domain 

also includes one environmental factor (carbon emissions) to avoid having a 5th domain. Along these four 

dimensions, the selected factors representing the impacts of RWA in the R-Map model are discussed in detail 

below. For an overview of factors that result from the co-design process (section 2.3) see Figure 10.  

 

 

Figure 10: Impact factors included in the conceptual R-Map model 

   

3.2.2.1 Spatial impacts 

The spatial impacts of RWA include factors that describe changes in land use, transport patterns and spatial 

manifestation of socioeconomic factors. Five spatial impacts are identified: polycentricity, land consumption, 

multilocality, mobility patterns, and relocation, with carbon emissions later added as an environmental 

impact. 
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1. Polycentricity: The factor was originally suggested by Task 1.2 as suburbanisation, urban 

decentralisation and new centralities and was subsequently clubbed into polycentricity, considering 

the preferences of state variables over processes in the interest of measurement. Polycentricity can 

be understood as a spatial phenomenon where at a regional scale multiple centres of similar size and 

importance exist, and at an urban scale, multiple neighbourhoods or sub-centres of similar importance 

exist. As described in D1.2, polycentricity could be a multi-scale phenomenon. At a regional scale, it 

implies the rise of small/medium-sized cities due to RWAs, while at a metropolitan scale, it implies 

decentralization towards the outskirts of the city. D1.2 recognises the emergence of new spatialities 

due to multilocality or relocation. These trends are reshaping urban development, land use, and the 

real estate market. Further, the report defines decentralization as the migration of (high-skilled) 

workers outside of the city centre to the immediate/inner suburbs within commuting distance, which 

can in turn lead to urban sprawl. The report cites Hölzel et al. (2023) and claims of a notable shift in 

the demand for office space during the COVID-19 pandemic. Similarly, Mariotti et al. (2021) and 

Biagetti et al. (2024) highlight the decrease in human presence in central neighbourhoods and 

increased demand for housing in less congested and more affordable areas outside urban cores.  

 

2. Land Consumption: Also originally suggested by Task 1.2, land consumption can be understood as the 

expansion of built-up area for human settlements. Task 1.2 defines land consumption in terms of the 

expansion of residential areas into previously undeveloped areas (due to more affordable housing 

options, less congestion and proximity to nature). They report that multilocality exacerbates land 

consumption by increasing the number of vacant or intermittently occupied homes. 

 

3. Multilocality: D1.2 defines multilocality as the maintaining of residences and activities in multiple 

geographic locations at the same time. It cites Greinke and Lange (2022), who in their study in three 

rural districts in Germany, report that multilocality prevents complete relocation from rural to urban 

areas due to strong ties to family and friends. The potential impacts discussed include housing prices 

being driven up, new construction, reduced affordability and vacancy in rural areas (Greinke and 

Lange, 2022; Weichhart and Rumpolt, 2015); increased land consumption, travel distance and car-

based commute, benefits to local economy, but pose a challenge in developing strong social ties and 

engagement in local civic activities (Danielzyk et al., 2020). 

 

4. Mobility Patterns: Like the driving factor taxation, social security, insurance regulations, the factor 

mobility pattern also acts as a broad container term. Originally the factor was suggested by Task 1.2 

as ‘transport infrastructure’ and by Task 1.4 as ‘transport and accessibility’. Task 1.2 further elaborated 

that the factor stands for a shift in mobility and car usage patterns. More specifically, it stands for 

changes in the usage of public transport, and increased reliance on private vehicles. This is also 

suggested by Deliverable 1.4. The factor was rephrased initially during the co-design workshop as 

‘shifts in modes of transport’ based on the Swedish experience which suggests the maximum shift was 

observed in the usage of different modes of transport than any other commuting behaviour. However, 

based on interviews conducted for Task 1.2, the Dutch experience suggests a shift in the purpose of 

commuting as well. Therefore, the factor was defined broadly as - patterns of human movement 
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facilitated by public or private transportation, encompassing two aspects: the choice of transport 

modes and the purpose of trips.  

 

5. Relocation: The factor was added after the workshop with the sister project, AB members and regional 

experts. The sister project WinWin4WorkLife (WW4WL) acknowledged the synergies in the two 

projects and more specifically their focus on similar dimensions, with ‘relocation’ as an important 

component in their study. We also observed ‘relocation’ studied as an important mediating factor 

between remote work and housing and the real estate market. Additionally, it also allowed us to clarify 

the R-Map conceptual model, as will be elaborated further. Thereafter, upon further discussions with 

the partners, the factor was introduced and can be understood as the decision to move someone’s 

place of living. 

 

6. Carbon Emissions: The factor was added during the second technical workshop with the project 

partners. The impacts of RWA on carbon emissions were already studied several years ago. It is mainly 

affected by the travel behaviour of employees and their locational choices. Therefore, the above-

outlined factors of mobility pattern, multilocality and polycentricity are mediating factors to carbon 

emissions. Various studies conducted during the COVID-19 pandemic revealed a decrease in carbon 

emissions due to a higher share of home working and reduced commuting activities by car (Roberto 

et al. 2022). In certain contexts, this energy saving might be eaten up by increased energy consumption 

during homework and other behavioural changes of remote workers (Marz and Sen 2022).  

 

3.2.2.2 Social impacts 

Social impacts represent the impacts of RWA on the life and living conditions of the employees. Three social 

impacts were identified including health and well-being, caring responsibilities, and social cohesion. These are 

described below. 

1. Health and Wellbeing: Originally suggested by Task 1.3, the factor is defined as capturing impacts on 

physical health, mental health, social and family, work-related needs, and health behaviours - physical 

activity, diet, and sleep (according to EU-OSHA, 2023). Also, as mentioned in D1.3, the WHO 

emphasizes a holistic approach to well-being, encompassing physical and mental health as well as 

social dimensions to promote overall health and quality of life (WHO, 1948; Topp et. al., 2015). It 

further details that remote working arrangements encompass specific working conditions and 

organizational structures that generate psychosocial factors. These factors could potentially serve as 

sources or conditions that expose individuals to various biopsychosocial influences. Psychosocial 

factors, in turn, are closely linked to biological outcomes, potentially impacting health, illness, and the 

development of diseases. 

 

2. Caring Responsibilities: The factor was originally suggested by Task 1.4 and Task 1.3 under the term - 

‘household dynamics-related burdens.’ Upon subsequent discussions, the term ‘caring 

responsibilities’ was decided due to its neutral phrasing, aligning it with the criteria of defining factors. 
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The factor, as defined in D1.3, captures responsibilities including housework, childcare, and care for 

elderly, relatives, among others. 

 

3. Social Cohesion: The factor was originally suggested by Task 1.4, as social network, and pertained 

more to workplace support networks. Upon subsequent discussions, the workplace component was 

isolated from the factor (termed as workplace loneliness, defined below) and was defined neutrally as 

the presence or absence of social ties or social support networks, referring both to physical and digital 

ties. This factor has potential implications for individual well-being, mental health, loneliness and 

productivity 

 

3.2.2.3 Economic impacts 

Economic impacts capture the effects of RWA on economic productivity and opportunities of employees as 

well as factors characterising the economic productivity of regions as a whole. Economic impacts include 

employee productivity, access to labour markets, and local/regional economic development. These are 

described below. 

1. Employee Productivity: The factor was originally suggested by Task 1.3 as ‘work intensity and 

productivity balance’ and during subsequent discussions separated into ‘employee productivity’ and 

‘work life balance’. As suggested by Task 1.4, the factor could be realized at two levels – micro- 

(individual level) and meso-level (organizational level). While at an individual level, the factor refers 

to how efficiently and effectively a worker or a group of workers contributes to accomplishing 

organizational goals, at a meso-level the factor means the achievement of goals by a particular 

organization. 

 

2. Access to Labour Market: The factor was suggested during the co-design workshop and was voted as 

having a significant impact. The factor was defined as access to a diverse and competitive labour force 

from an employer’s perspective. It also has relevance for employees, who have a wider range of 

possibilities of getting a job because of RWAs. The factor also captures labour participation at a societal 

level - participation of disabled people and inclusiveness. The dynamics of the labour market, including 

changes in demand for new jobs, also form a part of this factor. 

 

3. Local/ Regional Economic Development: The factor was suggested by Tasks 1.1 and 1.4 during follow-

up discussions on factor definitions and could be understood as the economic development of a region 

through which it can improve its economic, political, and social welfare state. As reported in D1.4, 

remote work fosters regional development by decentralising economic activities and establishing 

work centres in non-metropolitan areas. Areas with higher remote job shares show greater 

employment resilience, supporting local economies through stable spending and economic growth, 

particularly in smaller cities. 

 



 

Page 43 of 110 
 
D2.1: The R-Map model (v2), 31/03/2025 

GA 101132497 
 

3.2.2.4 Socio-economic impacts 

Given the interconnection between social and economic factors, the study also distinguished four socio-

economic impacts. They capture impacts at the interface of social and economic conditions of employees and 

include work-life balance, workplace loneliness, cost of living, and tourist/ digital nomad living space demand. 

These are described below: 

1. Work-life Balance: The factor was originally suggested by Task 1.3 as ‘work intensity and productivity 

balance’ and during subsequent discussions separated into ‘work-life balance’ and ‘employee 

productivity.’ D1.3 describes ‘work-life balance’ as the ability to balance between professional 

responsibilities and personal life - as time management and boundary settings between work and 

personal life, and its impact on family and social life. It is understood that work-life balance involves 

not only time management but also workload-related flexibility when needed. There are two key 

interfaces: a work-related supportive side and a life-related supportive side, each including various 

supportive services. 

 

2. Workplace Loneliness: The factor was suggested by Task 1.3 and was separated from ‘loneliness’ in 

general and personal social ties as captured by the factor ‘social cohesion.’ Defined in Del.1.3, 

workplace loneliness is characterized by a lack of information quality, supportive leadership, 

supportive conditions for job demands, and individual psychological states. It is understood that as 

new ways of working evolve, the definition of the "workplace" is also changing. Employee services 

related to these "new workplace" aspects play a critical role in supporting job engagement, task 

completion, and providing network support when needed. 

 

3. Cost of Living: Originally Task 1.1 suggested the factor ‘cost of living’, the factor ‘housing affordability’ 

was suggested during the codesign workshop and eventually the two were assimilated into ‘cost of 

living’ as it was considered more holistic. The factor can be broadly defined as the amount of money 

that a person needs to pay for basic needs such as food, shelter, and energy. 

 

4. Tourist/ Digital Nomad Living Space Demand: Task 1.4 suggested the factor ‘local tourism economy’ 

originally, however, it was not adjudged as amongst the most significant factors during the co-design 

workshop. During subsequent discussions, the impact on tourism, specifically from digital nomads, 

was highlighted as a relevant dimension to be included by multiple partners. Therefore, the factor was 

added to cover the demand for living space from the increased number of tourists and digital nomads. 

 

3.3 The final conceptual R-Map model 

In this section, the final conceptual R-Map model is presented. The elaboration of the network of causal 

relations between the various impacts of RWA that built the core of the R-Map model, was done in two steps 

during the co-design process in parallel to the identification of RWA impacts presented above: the first draft 

causal network of the R-Map model was developed during the co-design workshop at the UT. Further 

refinement and validation of the R-Map model were done throughout the series of technical workshops and 
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intermediate tasks fulfilled by the partners. Key information for the latter was the partner survey on cause-

effect relations conducted between the second and third technical workshops.  

Below, first, the results of the partner survey are presented and discussed. Then the final R-Map model is 

elaborated. To determine causal relations between factors the R-Map partners were asked in the survey to 

provide their view on (i) the existence of causal relations between two specific factors, (ii) the strength of the 

causal relations, (iii) the type of causal relations, and (iv) the temporality of the relationship (see section 3.3.3). 

Results from the analysis of causal relations between factors help in the semi-quantification of the R-Map 

model (see section 3.3.2)  

3.3.1 Degree of consensus on causal relationships 

Figure 11 shows the results of the first question of the survey which was - does Factor A cause a change in 

Factor B, with the option of answering ‘yes’, ‘no’ or ‘I don’t know’. We associate a value of 1 with each ‘yes’ 

mentioned and sum the values per causal relationship to arrive at the heatmap. The heatmap representation 

captures the directional graph with the y-axis depicting the factors where a link emanates from and the x-axis 

depicting a factor where it terminates. Due to its directional nature, the heatmap is not symmetric along the 

diagonal. Three classifications – high (values 9 and 10), medium (values 6 to 8) and low (values less than 6) 

consensus – were made based on quantiles, such that the number of values in each class is approximately the 

same.  
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Figure 11: Degree of consensus on causal relationships 

 

The identification of the direction of links reveals a strong consensus on the effect of RWA on several impact 

factors, specifically, health and wellbeing, mobility pattern, multilocality, polycentricity, social cohesion, 

tourist/digital nomad living space, work-life balance, workplace loneliness, access to labour market, and 

local/regional economic development. Additionally, there is significant agreement on the influence of various 

social and socioeconomic factors on health and well-being—such as social cohesion, work-life balance, 

workplace loneliness, caring responsibilities, cost of living, and access to local amenities—establishing health 

and well-being as a broader, final impact beyond immediate outcomes. 

Both digital infrastructure and transport accessibility are seen as key drivers for RWA by all partners. 

Furthermore, multilocality and polycentricity are identified as critical bridges across domains, influencing a 

wide range of factors. There is strong agreement that polycentricity impacts spatial factors such as land 

consumption and mobility patterns, as well as economic factors such as access to the labour market and 

local/regional economic development. Similarly, there is broad consensus that multilocality is connected to 

the spatial factor of polycentricity and the economic factor of local/regional economic development. High 
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agreement also exists on the role of digital infrastructure accessibility as a key driver of mobility patterns and 

polycentricity, a relationship further clarified through the introduction of the factor of relocation. 

 

3.3.2 Strength of causal relationships 

A high consensus among partners of a causal relation between single impacts or driving factors does not allow 

to make any conclusions on the strengths of this relation. Therefore, in the second question of the survey we 

asked about the strength of a given relationship between Factor A and B, with the possibility of answering 

‘weak’, ‘medium’, ‘strong’ or ‘I don’t know’ A weight of 1, 2 and 3 was associated respectively with the answers 

‘weak’, ‘medium’ and ‘strong’ and was summed per causal relationship to arrive at the heatmap. Also, if 

respondents replied ‘yes’ in the previous question and specify ‘I don’t know’ in the second question, we also 

assign a weight of 1. We use the quantile criteria here as well, to specify five categories, including very strong 

(values 23 to 25), strong (values 19 to 22), medium (values 17 and 18), weak (values to 11 to 16) and very weak 

(values less than 11). The results are depicted in the same format as above in Figure 12.        

Most important findings are that RWA have the strongest causal relations with the impacts: health and 

wellbeing, work life balance, workplace loneliness, and access to labour markets. They are further also strongly 

related to the impacts of mobility patterns, polycentricity, tourist living space demand, and employee 

productivity. Another interesting finding is that social cohesion is a weakly linked to RWA despite the strong 

consensus of the relation elicited in the figure below. 
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Figure 12: Strength of causal relationships 

 

Most important findings are that RWA have the strongest causal relations with the impacts: health and 

wellbeing, work life balance, workplace loneliness, and access to labour markets. They are further also strongly 

related to the impacts of mobility patterns, polycentricity, tourist living space demand, and employee 

productivity. Another interesting finding is that social cohesion is weakly linked to RWA despite the strong 

consensus of the relation elicited in the figure above.  

Other very strong causal relations elicited by the partners are health and wellbeing on employee productivity, 

and polycentricity on mobility patterns, social cohesion, work life balance, workplace loneliness. The driver 

access to local amenities strongly correlates with health and wellbeing, and the driver digital infrastructure 

accessibility with access to labour markets. Overall, health and wellbeing is the factor that is strongly affected 

by a number of impacts, which makes this factor a key final impact of the R-Map model. Also, the factor carbon 

emissions is affected by 8 other impacts though often only mapped as a weak link. This is potentially because 

the factor carbon emissions was added a little later in the process to the set of factors, and so/thus not all 

partners had assessed causal relations to it in the survey.  
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3.3.3 Type of causal relationships 

For developing the R-Map model it was crucial to assess whether the mapped causal relations between factors 

are positive or negative. To address this issue the partners had to assess the type of causal relationships 

between two factors by answering the question whether an increase of factor A causes an increase or a 

decrease of factor B, with the possibility of answering ‘yes’, ‘no’, or ‘I don’t know’. Partners were also allowed 

to enter ‘mixed’ in the comments if they believed that the relationship varies depending on the context. For 

broad, container factor terms, an additional step was undertaken to refine their definitions and to clarify what 

constitutes an increase or decrease in the respective factors. Specifically, this refinement was applied to the 

following factors: 

1. Mobility Pattern: The scope was narrowed to focus specifically on the usage of public transport. 

2. Taxation, Social Security, and Insurance Regulations: The definition was streamlined to address tax 

benefits associated with remote working.  

The results are shown below in Figure 13. All mapped causal relations are shown on the y-axis with length of 

the bar chart indicating the number of partners having assessed the relation and in colour the results of the 

assessment per partner (green= positive relation, red=negative relation, beige=I don’t know). The figure 

further shows the degree of consensus among partners on the type of relation: the longer the green or red 

colour per bar, the higher the degree of consensus. In case of shorter bars, not all partners assessed the causal 

relationship to/that exist.  

Overall, a large number of relationships is conclusively positive. The highest degree of consensus exists on the 

positive relation of work-life balance, social cohesion, and access to local amenities, with health and wellbeing. 

High consensus exists also on the positive relations between multilocality and polycentricity, health and 

wellbeing and employee productivity, and digital infrastructure accessibility and RWA. For several other 

relations, some partner did not confirm the positivity of the relations which might have to do with their 

scientific background and knowledge.  

Overall, 10 of the mapped relations are assessed by the partners as conclusively negative. The highest 

consensus exists on the relation of workplace loneliness to health and wellbeing, and caring responsibilities to 

work-life balance. In total, 14 relations got a mixed assessment by the partners. Reasons for this differential 

view on relations can be the varying experiential knowledge and experience of partners with respect to the 

relations, different mental models of contexts these relations are applied to by partners, and varying 

interpretations of factors by partners. The latter is potentially aggravated by the purposely broad definition of 

factors that in some cases serve as container terms for more than one concrete impact indicator. For the 

overall R-Map model developed in this task the relations are to be excluded from the model, given the 

uninformative prior in such cases within the Bayesian setup may produce uncertain results. For the application 

of the model in different contexts and regions in WP4 of the R-Map project these relations will have to be re-

examined. 
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Figure 13: Type of causal relationships – positive, negative or mixed 
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3.3.4 Temporality of causal relationships 

Finally, the temporality of the mapped causal relations was assessed by the partners in answering the 

questions of how long a relation between factor A and factor B takes to realise. The distinction between factor 

relations at a temporal scale is crucial for eliciting cause-effect chains over several factors from the here-

assessed one to one relations. 

  

 

Figure 14: Relative temporality of causal relationships 
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The results of the question are visualised in Figure 14, distinguishing causal relations into the categories of 

short, medium, and long-term. This temporality is mapped on the x-axis with drivers being plotted on the very 

left and long-term effects of RWA being plotted on the far right of the graph. 

It is important to mention that the temporality of the relations is mapped in Figure 14 in relative, not absolute 

terms. Temporality should further be understood in terms of the domain, i.e. spatial impacts may take longer 

to be realised, than impacts in the social domain. For example, health and well-being, identified as a medium-

term impact and positioned one step beyond immediate effects such as workplace loneliness and work-life 

balance, is manifested considerably sooner than polycentricity. 

Additionally, the final assessment presented in Figure 14 is evaluated relative to RWAs and other associated 

impacts. For instance, while the majority of partners indicated that the causal relationship between RWAs and 

polycentricity unfolds over the long term, a similar time frame was identified for the relationship between 

polycentricity and land consumption. Consequently, in relation to RWAs and land consumption, polycentricity 

is classified as a medium-term impact. 

Overall, we can conclude that the partner survey provided valuable insights for the analysis of causal relations 

between factors that help with the conceptual design of the R-Map model and its semi-quantification. For the 

co-design process we can constitute that the results of the survey rather confirmed the initial mapping of 

relations done during the co-design workshop at the UT. Moreover, a large degree of agreement between 

partners exists regarding the causal relations between impacts of RWA. Nevertheless, a high agreement does 

not necessarily translate into a strong causal relationship, which underlines the quality of the survey for 

developing the R-Map model.  

 

3.3.5 The final conceptual R-Map model 

Based on the results of the partner survey on the consensus of causal relations between factors and their 

respective strengths, certain links of low relevance were excluded from the R-Map model. The criteria for 

retaining or omitting links in the R-Map model were as follows: 

1. Exclusion of very weak links: Links identified as very weak, based on survey responses regarding the 

strength of causal relationships (Figure 12), were omitted. For example, links such as multilocality to 

employee productivity and work-life balance to workplace loneliness were excluded under this 

criterion. 

 

2. Exclusion of redundant links: Links that are redundant due to being already captured by another causal 

chain were removed. For instance, the link between caring responsibilities and employee productivity 

was excluded, as it was determined to be mediated by work-life balance. 

 

3. Minimizing loops: To ensure clarity and facilitate modelling in Task 2.2 as Bayesian Networks, loops 

were excluded wherever possible. In cases of two-way relationships, the dominant direction was 

retained. For example, while a bidirectional relationship was identified between cost of living and 

tourist/digital nomad living space demand, the link from cost of living to demand was weak, whereas 

the reverse direction was strong. Therefore, the link from "tourist/digital nomad living space demand" 

to "cost of living" was retained, and the reverse link was excluded. 
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4. Focus on RWA-driven causal changes: As mentioned, links mediated by RWAs were prioritized in the 

conceptual model to emphasize causal changes driven by remote work, aiding discussions on this 

theme. For instance, while strong connections were identified between access to local amenities and 

digital infrastructure accessibility, these were temporarily excluded. 

 

5. Exclusion of mixed relationships for modelling in Task 2.2: Links characterized by mixed relationships 

(Figure 13), while retained in the conceptual R-Map model, will be excluded from the modelling 

exercise in Task 2.2. 

After semi-quantifying the causal relationships between factors and classifying them, a directed network was 

generated, resulting in the conceptual R-Map model presented in Figures 15 and 16. To facilitate focused 

discussions, a simplified representation was adopted, wherein all causal links from drivers to impacts were 

mediated through RWAs. This approach emphasizes the scope of the task, which is limited to understanding 

causal relationships stemming from RWAs. While direct relationships between drivers and impacts are of 

interest and may be utilized in Task 2.2, the primary objective of Task 2.1 was to map causal relationships 

emanating from RWAs and between impact factors. 

Figure 15 represents the factors as nodes and the causal relationships as directed arrows, with their weights 

reflecting the strength of relationships as indicated by partners in the survey. Arrows associated with carbon 

emissions have been moved to a class above the one indicated in the survey, to correct for the later inclusion 

and subsequent underrepresentation in the survey. It can be seen in Figure 15 that the factors of health and 

wellbeing, cost of living, and regional economy are the key final impacts of remote working arrangements, 

indicated by a high number of incoming (receiving) links. Further, it can be observed that spatial impacts are 

rather intermediate impacts resulting in social, economic and socio-economic impacts.   
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Figure 15: The conceptual R-Map model (a) 
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Figure 16 further depicts these relationships by their type—positive, negative, or mixed. Most of the causal 

relationships included in the R-Map mode are positive relations, i.e. when the factor where the link starts 

increases also the factor where the link terminates increases. While this is not so important for the conceptual 

design of the R-Map model, it needs to be taken into account when it comes to the modelling of impacts and 

the translation of factors into indicators.  

 

 

Figure 16: The conceptual R-Map model (b) 

 

To analyse how changes in Remote Work Arrangements (RWAs) and other drivers influence final impacts, and 

to assess the significance of intermediate factors in this process, specific causal chains can be isolated from 

the R-Map model.   
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Causal chains can be described as pathways of influence that originate from a root cause and lead to an impact, 

passing through multiple intermediate factors. A causal chain can have several causal paths. These causal 

chains can be used to identify confounders and mediating factors. Figure 17 illustrates an example of a causal 

chain from RWAs to the cost of living, highlighting the following causal paths: 

1. RWA > Tourist Demand > Cost of Living 

2. RWA > Relocation > Polycentricity > Cost of Living 

3. RWA > Relocation > Polycentricity > Land Consumption > Cost of Living 

4. RWA > Multilocality > Polycentricity > Cost of Living 

5. RWA > Multilocality > Cost of Living 

6. RWA > Mobility Pattern < Polycentricity > Cost of Living 

7. RWA > Mobility Pattern < Multilocality> Cost of Living 

 

Figure 17: A causal chain from RWA to cost of living in the R-Map conceptual model 
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In terms of factor types and their implications, we make the following few observations: 

1. Mobility Pattern as a Collider 

Mobility pattern acts as a collider or common effect in the causal chain. Controlling for it would 

violate the back-door criterion, resulting in spurious correlations. Therefore, it should be excluded in 

a multivariate regression analysis in a Bayesian setup. 

 

2. Multilocality as a Confounder 

Multilocality serves as a confounder between polycentricity and the cost of living. Consequently, it is 

critical to control this factor in the analysis to prevent biases and ensure valid causal inferences. 

 

3. Tourist Demand as a Mediator 

Tourist demand can be classified as a mediator in the causal chain. However, since not all tourist 

demand is driven by remote work and is influenced by external factors beyond the causal map, it 

cannot be excluded outright. A more effective approach is to introduce additional control variables 

to better understand their contribution to the final impact (i.e., cost of living). 

 

4. Relocation as a Mediator 

Similar to tourist demand, relocation can be classified as a mediator in the causal chain, and one 

which is not entirely driven by remote work. Therefore, it should not be excluded from the analysis. 

Instead, other control variables should be introduced to isolate their role in influencing the cost of 

living. 

 

5. Land Consumption as a Mediator 

Land consumption is strictly a mediator between polycentricity and the cost of living. Since land 

consumption can be safely assumed to be driven entirely by polycentricity, it may be excluded from 

the analysis if the focus is solely on understanding the impact of remote work on the cost of living. 

However, this exclusion should only be considered after controlling for variables that drive 

polycentricity. 

By distinguishing between confounders, mediators, and colliders within a specific causal chain, the analysis 

can be structured to prevent spurious correlations, maintain valid causal pathways, and ensure a robust 

understanding of the relationships between RWAs, intermediate factors, and final impacts. This approach can 

also be extended to other causal chains, allowing for a detailed assessment of the effects of various factors on 

specific final impacts of interest, such as health and wellbeing, carbon emissions, employee productivity, or 

the regional economy. 

 

3.4  Computational implementation of the conceptual R-Map model 

The R-Map conceptual model serves as the foundation for Task 2.2 (Section 5), which focuses on distilling, 

detailing, implementing, and validating the R-Map model. Specifically, Task 2.2 involves formulating indicators 

and proxies which are in the form of measured data for the factors identified in Task 2.1 and harmonizing 

datasets as inputs for the implemented model; the datasets so far identified are outlined in the subsequent 

section. The implemented model is a reduced version or subset of the conceptual model. The reason is that 
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the scope of the model is constrained by the availability of relevant data and certainty of causal relationships. 

After the indicators are developed, the causal relationships are reformulated using these specific indicators, 

ensuring alignment with the R-Map conceptual model. This step is essential, as some factors may have multiple 

indicators, and additional control variables may need to be introduced. This is further elaborated in Section 5. 

The R-Map model is implemented with the rationale of treating the conceptual model shown in Figures 15-16 

as the graph-based representation of statistical relations among factors, while the statistical relations are 

modelled using a Bayesian approach. Hence, both surveyed knowledge and measured indicators from datasets 

are treated to capture people's belief and actual measurements at the same time. Insights from the survey 

regarding the types of causal relationships are utilized as the model priors in the Bayesian setup, while 

likelihoods and posterior probabilities are derived from the data where available. This methodology also 

enables several analytical directions, such as assessing the significance of various factors in influencing specific 

outcomes (looking "up" the network) or predicting potential outcomes under hypothetical scenarios where 

certain factors take predefined values (looking "down" the network), as discussed in Section 2.1.4.  

Furthermore, additional model functionalities can include accommodating the addition of new factors and 

facilitate learning of the causal network structure. 

As the R-Map model is designed as an integrated assessment framework for Europe, and most indicators are 

singular values at NUTS-3 or NUTS-2 levels, it is reasonable to anticipate model outputs in terms of singular 

values at these scales. However, as the project advances into regional case studies under WP4, more localized 

data can be collected, enabling detailed, context-specific analyses and/or predictions. 
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4. Data sources to inform the R-Map model 

To perform an integrated assessment of spatial, social, and socio-economic impacts of RWA across Europe and 

to evaluate the impacts of remote working arrangements on different regions in WP4, the here identified 

factors need to be translated into measurable indicators and connected to data sets that inform these 

indicators for the different spatial units. This part of the work is conducted in Task 2.2 of the WP2. To prepare 

for this, Task 2.1 identifies suitable data sources that allow to inform the indicators of the R-Map model. 

Possible data sources for this are publicly available data sets published on open data portals including other 

HEU projects that publish open data sets as results of their research, data that is derived from the large-scale 

survey conducted in the R-Map project (Task 1.5), and unconventional data sources, for example data 

potentially derived from social media platforms such as LinkedIn or Twitter (now X). Suitable data sets from 

these different sources to inform factors in the R-Map model are discussed in this chapter.    

To inform the R-Map model factors and indicators the data sets need to fulfil certain requirements. The 

following criteria were applied for selecting the data sets discussed below.   

- The data needs to be publicly available and accessible   

- The data needs to be available for different years to allow the analyses of changes over time (e.g. 

before and after the COVID-19 pandemic) 

- The data needs to be available at sufficient spatial resolution. As the goal of the R-Map project is to 

assess the impacts of RWA at the regional level, the data is ideally available at NUTS3-level or NUTS2-

level.   

- The data needs to be available - ideally - for the entire EU to support a coherent and consistent 

assessment of RWA impacts across different case studies.    

    

4.1 Open data sources 

Open data sources provide access to publicly available data sets typically compiled and verified by 

governmental authorities. The following publicly available data sets are suitable to inform the R-Map model.  

Eurostat (https://ec.europa.eu/eurostat/en/web/main/data), the statistical office of the European Union, 

provide high-quality statistics and data on Europe for a large variety of different topics and themes, including 

land use, economy, population and social conditions, transport, environment, among many other topics. 

Eurostat data is harmonized across all EU countries, available for longer time series, and provided at a high 

spatial resolution down to NUTS3 level, which makes it a rich and important data source for the R-Map Model.     

The European Foundation for the Improvement of Living and Working Conditions (Eurofound) provides data 

and surveys on working conditions and sustainable work, industrial relations, labour market change and 

quality and life and public services in Europe (https://www.eurofound.europa.eu/en/data ). The data offers a 

unique source of comparative information on the quality of living and working conditions across the EU and 

this is very valuable to inform the R-Map model. Several surveys that Eurofound conducts are done repeatedly 

and allow for the analysis of changes over time. The spatial resolution is often limited to country level, more 

detailed resolution needs to be checked and requested for single data sets.      

https://ec.europa.eu/eurostat/en/web/main/data
https://www.eurofound.europa.eu/en/data
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OpenStreetMap (OSM) is an online open geographic database, regularly updated and provides detailed spatial 

data across the world maintained by a community of volunteers via open collaboration. While this spatial data 

cannot be directly used to inform specific factors or indicators of the R-Map model, it can be used to construct 

indicators. Examples are for instance a spatial data layer of road networks across Europe provided at 

https://www.globio.info/download-grip-dataset that can be helpful for assessing transport accessibility per 

region, or a spatial data set containing points of interest that might help assess the density of amenities per 

region in Europe. 

The EU Social Progress Index (EU-SPI, https://ec.europa.eu/regional_policy/assets/social-

progress/index.html#/) provides data for EU regions on a range of social and environmental aspects. The data 

sets include data on basic needs (housing, medical care) and foundations of wellbeing (information and 

communication, health) including environmental quality. They are available at NUTS2 level for the years 2016, 

2020, and 2024 which makes it suitable to compare the situation before and after the COVID-19 pandemic.    

The ESPON Data and Knowledge Portal (https://gis-portal.espon.eu/arcgis/apps/sites/#/espon-hub) provides 

data and indicators on European territorial development including a broad variety of topics such as population 

and living conditions, economy and labour markets, employment, transport and accessibility, among other 

topics. The data is publicly available at NUTS2 resp. NUTS3 level for different years, covering the entire EU 

territory.     

The ESPON data portal also provides several highly aggregated indices composed of available data. That might 

serve to inform single R-Map indicators. The good life enabler index is for instance compiled of indicators that 

are partly also included in the R-Map model. The documentation of the construction of the index might serve 

as a good basis for targeting suitable data sets to be included in the R-Map model 

(ttps://archive.espon.eu/sites/default/files/attachments/ESPON%20Working%20Paper%2C%20Is%20Our%2

0Life%20Good%20Enough.pdf  

https://www.globio.info/download-grip-dataset
https://ec.europa.eu/regional_policy/assets/social-progress/index.html#/
https://ec.europa.eu/regional_policy/assets/social-progress/index.html#/
https://gis-portal.espon.eu/arcgis/apps/sites/#/espon-hub
https://archive.espon.eu/sites/default/files/attachments/ESPON%20Working%20Paper%2C%20Is%20Our%20Life%20Good%20Enough.pdf
https://archive.espon.eu/sites/default/files/attachments/ESPON%20Working%20Paper%2C%20Is%20Our%20Life%20Good%20Enough.pdf
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Figure 18: The framework for good life enabler index (source: ESPON 2021) 

 

Europe-wide data sets that are produced and made publicly available in the context of other HEU projects 

might be also relevant data sources to inform indicators of the R-Map model. For instance, the LOCALISED 

project (https://www.localised-project.eu/), which aims at downscaling decarbonisation trajectories 

consistent with the EU's net-zero targets to local levels, has published an open data set via a data sharing API 

on Github that contains also small-scaled sociodemographic and socioeconomic data as well as data on 

industries and services https://github.com/FZJ-IEK3-VSA/LOCALISED-Datasharing-API-Client. Most of the data, 

that originally stems from public data portals such as Eurostat etc, has been downscaled and disaggregated 

from a broader spatial resolution to NUTS3 and even Local Area Units (LAU), which increases the relevance of 

the data of the R-Map project.   

  

4.2 Large-scale survey on remote workers’ perceptions, requirements, 

and location choices (WP1, Task 1.5) 

In WP1, as part of/in Task 1.5 of the R-Map project a large-scale survey was conducted to collect primary data 

on remote workers' perceptions, requirements, and factors influencing location choices. The survey aimed to 

create a comprehensive dataset by targeting approximately 20,000 participants, which could inform 

https://www.localised-project.eu/
https://github.com/FZJ-IEK3-VSA/LOCALISED-Datasharing-API-Client
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subsequent stages of the project. Initially, the survey focused on European participants; however, due to 

limited responses, it was expanded to include similar countries such as the United States, Canada, and 

Australia. 

The questionnaire captured various aspects of remote work, including hours worked remotely per week, 

industry background, gender, workplace preferences and drivers, commuting distances and modes, as well as 

participants' current work and home location (municipality level). It also inquired whether respondents had 

relocated their place of work or residence due to remote work and, if so, the corresponding municipalities 

before and after the change. To ensure data privacy, participants were anonymized. Respondents were asked 

to provide municipality names in a textual format. However, this introduced challenges with data consistency, 

requiring substantial data cleaning efforts. 

 

4.2.1 Data processing and matching 

To associate municipalities with spatial administrative boundaries, a two-pronged strategy was employed: 

1. For European municipalities, responses were matched with Local Area Units (LAUs) and linked to their 

respective NUTS-3 regions. 

2. For non-European municipalities, responses were matched with GADM (the Database of Global 

Administrative Areas). 

Furthermore, municipalities were classified into urban-rural categories for proceeding tasks and dissemination 

purposes. For Europe, the NUTS-3 typology was used, classifying regions as predominantly urban, 

predominantly rural, or intermediate. For non-European municipalities, the Degree of Urbanisation 

framework was applied (The European Commission & United Nations Human Settlements Programme, 2021), 

categorizing level 2 administrative areas (approximating municipal scales) into categories such as urban 

centres, dense urban clusters, semi-dense urban clusters, suburban or peri-urban, rural cluster, low-density 

rural, very low-density rural, and water. 

 

4.2.2 Insights and inputs for Task 2.2 

The results of this large-scale survey are potentially a rich data set to inform the quantification of indicators 

for the R-Map model (Task 2.2, Section 5), particularly as such a survey was never done before. The data set 

can especially help explore some of the following key research questions: 

1. Relocation due to remote work: Assessing the extent to which remote work influences residential 

relocation and its relationship with hours worked remotely. 

2. Distance of relocation: Determining how far individuals are willing to relocate from their workplace 

based on the extent of remote work. 

3. Job location choices: Exploring whether individuals are willing to secure jobs farther from their homes 

and how this correlates with remote working hours. 

4. Regional attractiveness: Evaluating the ability of regions to retain or attract remote workers. 
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5. Commuting behaviour: Analysing commuting mode choices in relation to commuting distances and 

transport accessibility. 

These inquiries can be further enriched by integrating other open datasets mentioned previously, allowing for 

an investigation into factors such as access to amenities, transport accessibility, digital infrastructure 

availability, and taxation in shaping relocation decisions. Additionally, this data can be used to assess whether 

relocation results in actual land consumption, leveraging built-up area data from sources such as the Global 

Human Settlement (GHS) dataset. This dataset provides a unique foundation for advancing understanding of 

remote work's spatial and socio-economic impacts, offering critical insights for policy and planning. 

 

4.2.3 Insights from LinkedIn poll on remote work preferences and impacts 

Complementary to the large-scale survey, a LinkedIn poll was conducted by the R-Map project, garnering 

approximately 5,500 responses. This poll sought to further explore the workplace and location preferences of 

remote workers, as well as the perceived impacts of remote work on productivity and job satisfaction. Key 

findings from the poll include: 

1. Positive impact on productivity: Respondents overwhelmingly reported that remote work had a 

positive effect on their productivity. 

2. Enhanced job satisfaction: An even stronger positive response was observed regarding the impact of 

remote work on job satisfaction. 

3. Preference for suburban or rural living: A significant preference emerged for suburban or rural areas 

over urban areas, indicating a tendency towards less densely populated living environments. 

4. Flexibility in work schedules and location: Respondents expressed a positive sentiment toward the 

flexibility remote work offers in terms of choosing work schedules and locations. 

5. Varied support preferences: Opinions varied on the type of support deemed beneficial for remote 

working, with preferences ranging from ergonomic office supplies to mental health and wellness 

initiatives. 

These insights underscore the importance of employee productivity and health and well-being as key final 

impact factors. Additionally, the preference for less densely populated areas reflects a centrifugal shift away 

from urban centres, highlighting the evolving spatial dynamics associated with remote work. 

 

4.3 Unconventional data sources 

To complement traditional datasets, we explored the potential of leveraging unconventional data sources to 

inform key factors included in the R-Map model. This included examining the data policies of social media 

platforms such as X (formerly known as Twitter), LinkedIn, and Threads, as well as open datasets shared within 

developer communities on platforms like Kaggle. Additionally, other sources offering transport, movement, 

walkability, and cost-of-living data at urban or regional scales were also considered. 
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4.3.1 Social media platforms and open data repositories 

1. X (formerly Twitter): Previously, X provided free access to its API and geolocated tweet collection, 

enabling sentiment analysis, and topic and keyword modelling (Saura et al., 2022), which could offer 

insights into public perceptions of remote work. However, these services have transitioned to a paid 

model, limiting their accessibility for research purposes. 

2. LinkedIn: As a platform rich in data on job postings and trends related to remote work, LinkedIn could 

have been a valuable resource. However, its free API services have been discontinued, restricting open 

access to such information. 

3. Threads (Meta): Threads, a newer social media platform similar to X, still allows limited free API usage. 

Although its user base is smaller compared to X, it remains a potential avenue for sentiment analysis 

and other exploratory studies. 

4. Kaggle: Kaggle hosts various developer-contributed datasets, including historical tweets and job 

postings in specific industries. While these datasets provide an opportunity to examine certain trends, 

their reliability and comprehensiveness remain, like for other social media data, uncertain, especially 

for nuanced analyses like assessing the spatial or economic impacts of remote work. 

 

4.3.2 Other unconventional data sources 

We also investigated platforms providing urban and regional-scale data on transport, movement patterns, 

walkability, and cost of living. For instance: 

1. Google Maps API: Previously a viable option for accessing Points of Interest (POI) data, this has also 

shifted to a paid service, limiting its feasibility for large-scale, cost-effective research. 

 

2. Mobile Phone Data: Aggregated and anonymized data from European Mobile Network Operators 

(MNOs) provides insights into stationary points and flows using unique identifiers linked to location 

and timestamps. Despite its utility, access is restricted and typically available only for specific studies 

under GDPR-compliant frameworks. 

 

3. Mobility Data Repositories: Mobility data at the national and European levels presents a valuable 

resource for analyzing transport and movement patterns. National initiatives include Germany’s 

Mobility Data Space, the Netherlands’ iSHARE, and France’s Bison Futé. The European Mobility Data 

Space (EMDS) initiative provides a unified framework for data interoperability and sharing in the 

mobility and transport sectors. Supported by the deployEMDS project under the EU Digital Europe 

Programme, EMDS facilitates multimodal mobility, traffic management, and sustainable urban 

mobility assessments, building on the groundwork of PrepDSpace4Mobility. However, the project will 

be fully operational only by 2026, requiring reliance on national repositories in the interim. City-level 

datasets include specific datasets, such as UTD19 curated by the Institute for Transport Planning and 

Systems at ETH Zurich, which provide detailed traffic flow data at the city level. 
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4. Remote Sensing Data: Satellite-based remote sensing data, particularly nighttime imagery from 

SDGSAT-1, offers the potential for detecting traffic volumes and analyzing urban mobility patterns. 

SDGSAT-1 is accessible for scientific purposes, making it a promising resource for mobility studies. 

However, its temporal coverage poses a challenge for continuous or high-frequency analysis, limiting 

its ability to capture dynamic trends comprehensively. 

 

5. Property and Job Listings Data: Web scraping of property websites and job listing platforms offers 

insights into housing and commercial property trends, relocation patterns, market demand, and 

remote work-related roles. However, legal and ethical considerations must be addressed to comply 

with data usage policies, and data cleaning is required to handle inconsistencies across platforms. 

 

6. Other data sources: 

Walkability Indices: Open sources like Walk Score provide valuable data on walkability, which can 

inform indicators related to access to local amenities. 

Quality of Life Metrics: Studies such as the "Regional Quality of Living in Europe" (Lagas et al. 2015) 

offer insights into regional quality of life metrics, which can inform indicators related to cost of living. 

 

While unconventional datasets provide unique insights into mobility patterns, housing markets, and 

employment trends, they come with challenges such as limited access, temporal coverage gaps, and data 

compliance requirements. Despite these hurdles, integrating these datasets with traditional sources can 

significantly enhance our understanding of the spatial and socio-economic impacts of remote work. Future 

efforts should focus on overcoming access barriers, fostering partnerships, and ensuring data quality to 

maximize their potential. 

 

  



 

Page 65 of 110 
 
D2.1: The R-Map model (v2), 31/03/2025 

GA 101132497 
 

5. The R-Map Model Implementation and Operation 

5.1 Recap of the R-Map model rationale 

Task 2.2 aims to implement of the R-Map model; it treats the model conceived in Task 2.1 as the conceptual 

foundation. The implementation focuses on distilling, detailing, implementing, and validating the R-Map 

model. Specifically, Task 2.2 further involves identifying and consolidating indicators and proxies which are in 

the form of measured data for the factors identified in Task 2.1 and harmonizing datasets as inputs for the 

implemented model; the indicators and corresponding datasets identified are outlined in section 5.4.2. The 

implemented model is a reduced version or subset of the conceptual model, considering that the scope of the 

model is constrained by the availability of relevant data and certainty of causal relationships. After the 

indicators are developed, the causal relationships are reformulated using these specific indicators, ensuring 

alignment with the R-Map conceptual model. This step is essential, as some factors may have multiple 

indicators, and additional control variables may need to be introduced. 

The R-Map model is implemented with the rationale of treating the conceptual model shown in Figure 16 as 

the graph-based representation of statistical relations among factors. The statistical relations are modelled 

using a Bayesian approach. More concretely, the conceptual model which represents key factors and relations 

within a system in terms of nodes and directed links among them, is translated and implemented as an 

operational statistical model, namely a Bayesian network in Python programming language. This modelling 

core brings the quantitative inference and predictions about how one set of factors as drivers, influence 

another set of factors as impacts, through their probabilistic relations to remote working arrangements (RWA). 

Hence, both co-created knowledge (gathered from consortium members) and measured indicators from 

datasets are treated to capture people’s perception or belief towards the factor relations, along with actual 

measurements of factors at the same time. Insights from the co-created knowledge gathered in 2.1 regarding 

the types of causal relationships are utilized as the model priors in the Bayesian setup, while likelihoods and 

posterior probabilities are derived from the data where available. This methodology also enables several 

analytical directions, such as assessing the significance of various factors in influencing specific outcomes 

(looking "up" the network) or predicting potential outcomes under hypothetical scenarios where certain 

factors take predefined values (looking "down" the network), as discussed in Section 3. Furthermore, the 

model can accommodate the addition of new factors and facilitate learning of the causal network structure. 

As the R-Map model is designed as an integrated assessment framework for Europe, and most indicators are 

singular values at NUTS-3 or NUTS-2 levels, this task anticipates model outputs in terms of singular values at 

these scales. However, as the project advances into regional case studies under WP4, more localized data can 

be collected, enabling detailed, context-specific analyses and/or predictions. At the same time, the 

implemented R-Map model is equipped with a regression analysis, which by nature can be extended into many 

forms such as spatial regression by taking advantage of the spatial information in the datasets, and generate 

results that are also spatially discriminative, hence, can be visualized as maps. 

In presenting the R-Map implementation, the report explicitly distinguishes between the R-Map model 

conceptualized in Task 2.1, and a full-fledged platform with extended functionalities of data harmonizations, 

storage, visualization and user interfaces, which will be realized through an extended workflow. The report 

also elaborates on its potential of being extended to a user-friendly platform with sample functionalities, 
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including data harmonization and storage, preliminary data exploration, model input preparation, and model 

output processing and storage, that can be added on top of the core model. 

5.2 Prepare inputs for modelling 

In order to implement the model, both the datasets as the inputs and the conceptualized model should be 

represented properly in a computer. There are two important pieces of raw data for the R-Map modelling. 

One is the harmonized spatial dataset (which will be illustrated later regarding data harmonization) encoding 

indicator or proxy values of the factors. And the second is people's perception (e.g. represented by partners 

involved in workshop of Task 2.1) towards the relations among the factors obtained through workshops and 

surveys from work-package 1 of the project. These two types of data provide inputs for the factors at the 

nodes and relations along the links shown already in Task 2.1. 

However, these datasets cannot be directly loaded into the model for the nodes and links. In fact, there is not 

yet a suitable model structure to load the data. Hence, the first step in the implementation is to create such a 

model structure, specifically a model frame with the necessary components of nodes and links to hold the 

data, so that the data can be structured resembling the structure of the model. In the R-Map model 

implemented in Python, the structure of the matrices created in Task 2.1 is used to derive how factors are 

linked. For instance, as shown in Figure 19 below, the entire matrices from Task 2.1 encoding how people see 

the strength and direction of links provide the information about whether factors are linked and can be viewed 

and transformed into binary encoding of factors and links. In the centre of the figure, a subset of the factors 

and the relations are shown in a binary matrix. This already captures a practical situation, where it is difficult 

to include all the factors in the actual modelling due to limitations such as data availability. Since the R-Map 

model is acyclic and non-reinforced (not allowing looping over one factor itself), the matrix should be 

asymmetric and registered with null values along the diagonal. Although it can still be visualized as a network 

such as that of Task 2.1 (as on the right-hand side of the figure), the actual structure is entirely registered in 

the binary matrix. The factor names are also passed down into either the rows or columns of the binary matrix 

in another Python List consistent with the numbering sequence [0, 1, 2, ...] as shown in the figure 19. In this 

way, data from the GIS table with certain factor name (normally on the top of each column) will be registered 

and numbered accordingly in the binary matrix. 

Given the model structure that is created, loading the information of relations for the links is more implicit 

than loading the factor values to the nodes. Firstly, the relations registered as people’s perception towards 

the causal links is largely categorical, such as ranking of discrete level of strengths, and direction of either 

positive or negative relation. They need to be translated into coefficients of relations, or probability of 

coefficients in the case of Bayesian Network. Secondly, the relations are not registered as part of the model 

structure as in a matrix in Figure 19, instead, they are parameters used in the process of modelling, hence, 

loaded in parallel with the model configuration. This will be shown in section 5.3, where the parameters of 

relations are used in the likelihood function specified for the Bayesian regression model. 
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Figure 19: Matrix to be "translated” into model structure as a "placeholder" 

 

5.3 Modelling: The core model algorithms 

The R-Map core model follows the setup of the classic Bayesian Network but also differs from the classic model 

with its characteristics. The classic Bayesian Network represented as a directed acyclic graph (DAG), consists 

of nodes linked by arrows, where each node is a factor or variable, and a directed arrow links two dependent 

nodes with the cause pointing towards the effect. Instead of the actual values of a factor or variable, each 

node encodes the probabilities of discrete events or status of the factor or variable at each node, conditioning 

on events that are considered as causes, which are linked by directed arrows. Hence, the probability at each 

node can be either a probability or conditional probability distribution depending on the presence of parent 

nodes as the causes. Any pair of nodes that are not linked are conditionally independent variables. For 

instance, in the example in Figure 20 below, the status of factor B, which takes a binary form P(b) and P(~b), 

is conditioned on the other two parent-factors L and C, hence a conditional probability P(B|L,C). The value of 

each probability, e.g. P(B = b|L = T,C = T), is given in a conditional probability table. The status for factors L 

and C are also given in their own table, but not in conditional probability form as no parent factors are present 

for them. Most importantly, any inference about a certain event, such as "What is the probability of the status 

C given an observed consequence as a status of B” in the form of P(C = T|B = T), can be derived through 

Bayesian inference as the joint probability of the two events normalized by the marginal probability of the 

consequence as P(C = T,B = T)/P(B = T). 

 

Figure 20: The classic setup of a Bayesian Network represented as a Directed Acyclic Graph (DAG) 
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5.3.1 The R-Map model as a modified Bayesian Network 

The implementation of the R-Map model follows exactly the structure of a Bayesian Belief Network. At each 

of the nodes, it encodes the probabilistic distribution of the factor values that can be either continuous or 

discrete, and the links stipulate relations among the factors. However, the spatial data to be loaded onto each 

node is not the distribution but actual measurements or observations. Further, people's perceptions towards 

the factor relations are explicitly gathered as co-created knowledge, which must be encoded as available 

information along the links. Hence, the prior knowledge is more or less along the links rather than at the 

nodes. Given the Bayesian Network structure and its similarity to the rationale of BBN, the configuration of 

the conditional probabilities and their computation should be adapted and differ from the original BBN setup. 

The R-Map core model differs from the setup shown in Figure 20 in a few ways. First of all, each of the nodes 

in the network graph encodes actual values of a factor, which can be either discrete or continuous, as opposed 

to probabilities of discrete status of the factor. In the case of continuous values, it can be population density 

values of all the spatial units on a map covering a certain geographic region. Imagine one of the harmonized 

datasets, such as those that can be visualized as maps but are essentially stored as GIS relational tables (or 

commonly referred as attribute table), or as a column of an attribute in the table. Although it is not the 

probability of a discrete status, it is still a distribution of values which can be approximated by a probabilistic 

density function. It is similar to how a probabilistic function represents a histogram of values. This narrows 

down the essential difference between the conventional setup of the Bayesian Network and the one in the R-

Map model. 

Secondly, both the practical (in the sense of supporting decision- and policymaking) and scientific values of 

the R-Map model are to understand how one or one set of factors influence the other, rather than just 

computing the outcome probabilities of factor status at each node. Then knowledge regarding what is going 

on along the edges, such as strength and directions of the relations, becomes the primary goal of the 

modelling. The workshop and survey collecting perceptions regarding factor relations from Task 2.1 largely 

focused on obtaining such knowledge. This means the characters of the edges should also be explicitly 

modelled, whereas the conventional Bayesian Network are only parameterized by conditional probability 

tables at the nodes. In the case of Figure 6, this forces conditional probability P(B|L,C) to be modified into 

P(B|L,C,βl,βc) with the relations along arrows from L and C explicitly parameterized. 

Ultimately, putting the differences in the configuration of both the nodes and edges, it leads to the 

modification of modelling itself, where the probability distribution of parameters along the edges should be 

estimated in the first place before modelling the actual values at the nodes. While the factor values are 

considered to be given at each node in the case of the R-Map model, estimating parameters such as βl and βc 

can be considered as estimating a posterior distribution of P(βl,βc|B,L,C), with values at node L, C and B (e.g. 

continuous values such as population density, age or housing property values) and prior knowledge of P(βl) 

and P(βc). Such modelling rationale naturally links to Bayesian regression as P(βl,βc|B,L,C)∝ 

P(B|L,C,βl,βc)P(βl)P(βc), where P(B|L,C,βl,βc) is considered as the likelihood function. Any predictive 

distribution regarding the actual values of B can be derived by using the posterior distribution of the 

parameters of βl and βc as updated knowledge of the relations together with the likelihood function and newly 

observed L and C. 

At the most generic level, estimating the probability, conditional probability or joint probability of an event in 

the conventional Bayesian Network is essentially equivalent to estimating the probability of values at each 

node of the R-Map model, where an extra layer of edge parameters needs to be estimated as well. This 

modification is fundamental as: (1) it captures interesting perceptions towards relations among factors as 

opposed to only the factors themselves; and (2) the Bayesian regression can be extended easily into 
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different forms such as to include spatial and temporal information as covariates, leading to modelling 

outcomes also spatially and temporally informed, and ready to be visualized on maps. 

5.3.2 The priors, likelihood functions and estimation 

In a very simple scenario without the loss of generality, the implementation of the R-Map model in Python 

can be illustrated by three nodes with two of them as the drivers and one as the impact, mimicking a multi-

factor network of the smallest size. As shown in Figure 21, the factor Mobility Patterns (M) is influenced by 

Transport Accessibility (T) and Digital Infrastructure Accessibility (D). Preferably, the indicators or proxies 

found for these factors are continuous measurements, for instance, some normalized index for T and D, and 

M is measured as distance travelled as one of several potential dimensions of mobility pattern. Then the 

conditional probability of M taking specific values is given as P(M|T,D,θt,θd), where θt and θd encode 

parameters of relation of T→M, and D→M, respectively. In practice, they are modelled as probability 

distributions serving as prior distributions of the parameters as shown along the arrows in the Figure. 

 

Figure 21: Oversimplified model components highlighting terms of the building block algorithm 

 

As mentioned above, estimating the posterior distributions of the parameters goes before the estimation of 

the predictive distribution of factor values. Hence, it can be the first building block algorithm of the R-Map 

model with the form of: 

P(θt,θd|M,T,D) ∝ P(M|T,D,θt,θd)P(θt)P(θd). (1) 

The terms on the right-hand side need further specifications. Again, as mentioned above, while such modelling 

configuration naturally links to Bayesian regression, the likelihood function P(M|T,D,θt,θd) can be specified 

exactly as a regression model subject to model complexity choices. For instance, in the first trial 

implementation of the R-Map, it can be a linear likelihood in the form of: 

P(M|T,D,θt,θd) ∼ N(Tθt + Dθd, δ2), (2) 

where a simple multi-variate linear regression model is used along with assuming a Gaussian noise δ2. 

Once the posterior distributions of the parameters are estimated, they can be plugged back into the 

Bayesian setup along with the likelihood function to make predictive distribution for the values of the target 

factor in the form of: 

P(M∗|T∗,D∗,M,T,D) =   ∫
 

 
P(M∗|T∗,D∗,θt,θd)P(θt,θd|M,T,D)dθtdθd, (3) 
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where ·∗ are new datasets of either drivers or impacts in the context of the R-Map model. Basically, with the 

regression setup, the predictive distribution uses the likelihood function of exactly the same form but 

averaging over all possible parameters according to the posterior distribution of the parameters. 

Obviously, the simple linear likelihood function Tθt + Dθd set in this case can be extended into a lot more 

sophisticated form with T and D being projected to higher dimensional feature space, such as (T,T2,T3,...), 

and other information can be attached together with them, for instance, the geographic locational 

information, which always comes along in all spatial datasets, and such setup can be turned into spatial 

regression flexibly.  

5.3.3 Operationalize the estimation 

As illustrated above, such a minimal representation in Figure 21 is sufficient to capture important modelling 

elements under the Bayesian formalization with the building block algorithms shown in Equation (1), (2), and 

(3). The report shows the operationalization of the model, where inputs are fed into the model, and estimation 

being generated with the algorithms applied. 

Once the datasets are properly harmonized as mentioned later in Section 5.7, the values of a given factor can 

easily be read as a single column of the GIS relational table. By drawing a connection of Figure 21 and Figure 

22 below, this can also be imagined as loading a map of values at a certain granularity (e.g. at NUT-3 level) in 

a given region into each node. Since the values in a column of a table or on a map themselves already yield 

data distributions considering in the forms of a histogram or being approximated by some probabilistic 

distributions, they carry statistical information automatically. A more complicated step is loading information 

for the parameters along the arrows encoding the relations among the factors. Such information, in its very 

raw form, namely the perceptions about the characters of the relations in the form of co-created knowledge 

such as positivity/negativity, strength, and degrees of agreements, need to be transformed into proper 

probabilistic distributions. In Figure 22 below, one can imagine that the matrices generated in Task 2.1 

encoding the relation characters have already been "translated" into statistical characters such as the mean 

or standard deviation of a distribution if Gaussian model is used for distribution approximation. Then for the 

prior distribution of a parameter, taking P(θt) for an example, multiple matrices should be used to read 

different statistical characters, where the means can be registered in one and the standard deviation can be 

registered in another. 
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Figure 22: Inputs prepared from the harmonized datasets being fed into the model 

 

Once the values from tables and matrices are properly loaded, the prior distribution and likelihood function 

specified in Equation (1) can be computed to derive the posterior distribution of the parameters and 

essentially be visualized as below in Figure 23. In the case of two driving factors, there are two regression 

coefficients shown as slopes (slope0 and slope1) in the figure. Since itis a linear regression model specified as 

shown in Equation 1, there is also an intercept parameter apart from the slopes in practice, which is not 

explicitly written down in the equation. Also, the noise level δ is estimated but shown as the variance σ = δ2 

in the figure below. 

Up to this phase, the report described how to achieve the estimation and computation of the R-Map model, 

but here only a very small subset of the model is illustrated. The entire estimation should be replicated over 

a rather large model in practice when more factors and links are included. All of the estimations about the 

predictive distributions taking place in the next step are built on top of the posterior estimation of the 

parameters. Hence, both data preprocessing/preliminary exploration, and model choice are decisive. 

Plugging the estimation outcome of Equation (1) into Equation (3) should produce new distributions P(M∗) in 

the case of the example in Figure 21. However, it can be more interesting, as already mentioned, to include 

the spatial information such as geographic locations in the likelihood function, in this example it is the linear 

regression function specified in Equation (2). Thus, the spatial regression can be configured as the likelihood 

function given large flexibility in specifying the form of the regression. Since the geographic locational 

information comes naturally along inside of the relational table and is attached as extra columns of geometric 

attributes, it should always be rather convenient to extract such information along with the other factor values 

as inputs into the model. This is considered as one possible extension of the current trial version of the R-Map 

model. 
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Figure 23: Estimating the posterior distribution of relation parameters. Schematic flow of data from the database tables 

into the nodes as input, and statistical distribution of the parameters are generated as the outcomes 

 

5.4 Illustration of one causal chain 

5.4.1 Selection of subset network of the R-Map conceptualization 

To illustrate the approach, we focus on a specific causal chain within the R-Map framework—namely, the 

pathway from RWA to the Regional Economy. This pathway was selected due to the relatively higher reliability 

and availability of proxy indicators along this chain, in comparison to alternative pathways. Crucially, the 

relationship between RWA and population change—and, by extension, between RWA and relocation—is of 

particular interest. The variable ’relocation’ functions as a key mediator, influencing both short- and long-term 

effects, such as polycentricity, cost of living, and regional GDP (see Figure 24). While direct origin–destination 

data capturing relocation flows attributable to remote work is not available, the conceptual model (Figure 25) 

positions relocation strictly as a mediating factor between RWA and population change. Therefore, population 

change is employed as a proxy to capture the downstream effects of relocation in this causal chain. 

Importantly, the decision to focus on a spatial-economic causal chain is also motivated by practical 

considerations around data resolution and interpretability. Many social indicators are either only available at 

the national level or are highly context-specific and influenced by individual-level variation, making them 

unsuitable for regional aggregation and statistical modelling. For example, work–life balance could 

theoretically be proxied using Eurostat data on the average number of usual weekly working hours in the main 

job; however, this data is reported only at the national level. Moreover, a key control variable for work–life 

balance—individual caring responsibilities—is not captured in available regional datasets, limiting the 

reliability of this proxy in assessing downstream impacts such as employee productivity. Similarly, while health 

and well-being could be approximated at the NUTS-2 level using indicators such as hospital days of in-patients, 

these aggregate metrics fail to reflect the heterogeneity of individual experiences and the contextual drivers 
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of well-being. Without the ability to control for intervening factors such as work–life balance or caregiving 

obligations, reliance on such proxies may introduce spurious relationships and obscure meaningful inferences. 

Consequently, the RWA-to-Regional Economy causal chain provides a more analytically robust and spatially 

interpretable pathway for investigation, given both data availability and conceptual clarity at the regional 

level. 

A key consideration in focusing on a specific causal chain is the need to incorporate appropriate control 

variables to accurately assess final impacts. This requirement informed our decision during the co-design 

process to distinguish between “factors”—defined as quantities that may increase or decrease as a result of 

changes in RWA or any dependent variables—and control variables, which are introduced later in the analysis. 

The inclusion of these control variables necessitates a reinterpretation of certain causal relationships and their 

corresponding linkages, as reflected in the extended network structure shown in Figure 25. The control 

variables presented here are derived from multiple sources: the literature review undertaken in WP1 (subject 

to data availability), insights gathered from survey responses and stakeholder input during the WP1 co-design 

process, and additional reflections contributed by project partners in WP2. It is important to emphasize that 

this represents one possible operationalization of the causal impact pathway from RWA to the Regional 

Economy, rather than a definitive model. As further data and research emerge, the framework can be refined 

to enhance the precision of impact estimations. The Bayesian Network probabilistic modelling approach is 

particularly well-suited for this task, as it allows for the integration of new variables without compromising 

the coherence of the model—such variables will, by design, demonstrate limited influence if they are not 

strongly supported by the data. Additionally, as discussed later, the functionality of network learning can be 

incorporated into subsequent stages of the research to further strengthen the model’s adaptability and 

empirical grounding. 
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Figure 24: Key causal chain – RWA to regional economy 
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Figure 25: Focal causal chain from RWA to regional economy with incorporated control variables 

 

5.4.2 Description of the indicators and corresponding datasets 

A detailed overview of the datasets used is provided in Section 4. Beyond identifying and processing the 

available datasets, we also developed a set of indicators—both direct and proxy—to represent specific factors 

within the model. Table 5 presents the proposed list of indicators, focusing on those factors for which 

reasonable and data-supported proxies could be established. In parallel, Table 6 presents the associated 

control variables. It is worth noting that for two factors—caring responsibilities and social cohesion—no 

meaningful proxies could be identified from available data sources. These omissions reflect broader limitations 

in regional-level social data and underscore areas for potential future data development. It is also important 

to note that the large-scale survey conducted as part of WP1 played a pivotal role in guiding key model 

assumptions. Specifically, it informed the identification of sectors with high remote work potential and 

clarified the relationship between relocation distance for residence and employment context. 

Table 5: Key indicators and corresponding data sources for identified factors 

No. Factor 
Potential Indicators and 
Proxies 

Spatial/ 
Temporal 
Granularity 

Spatial 
Coverage 

Dataset 
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1. RWA 

Annual change in 
percentage of the 
population working from 
home more than at least 
half of the days over the 
reference period of four 
weeks 

NUTS-2 / 2020 EU Eurostat1 

Percentage of employed 
adults working at home 

NUTS-2 / 
Annual 

EU Eurostat 

Percentage of employed 
adults working at home by 
sex, age groups, number of 
children and age of 
youngest child 

National / 
Annual 

EU Eurostat 

2.  
Transport 

Accessibility 

Ease of access to 

destinations as proxied 

through from street 

network analysis - average 

closeness or betweenness 

centrality  

Local / Cross-

sectional 
EU 

Street network 
data from OSM 
(derived from 
Geofabrik2), 
UTD19 traffic data3 

Ease of access to work 

locations as proxied through 

from street network 

analysis – average network 

step depth from business 

districts or travel time and 

cost 

Local / Cross-

sectional 
EU 

Street network 

data from OSM 

(derived from 

geofabrik) 

Average travel time to 

cinema, shops, stations, 

banks, pharmacies, 

hospitals, schools 

NUTS-3 / 

Cross-sectional 
EU ESPON 

Total road and rail network 

length 

NUTS-2 / 

Annual 
EU Eurostat 

3.  

Digital 

Infrastructure 

Accessibility  

Percentage of households 

with internet access at 

home 

NUTS-2 / 

Annual 
EU Eurostat 

Percentage of employees 

with internet for business 

purposes by sector 

NUTS-2 / 

Annual 
EU Eurostat 
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4. 

Access to 

Local 

Amenities 

Territorial Quality of Life – 

Good Life Enabler Index 
NUTS-2 / 2019 EU ESPON 

POIs (Points of Interest) - 

interpolated 

Local / Cross-

sectional 
Germany Eurostat 

Liveability index - Regional 

Quality of Living (2015) 

Cities, NUTS-2 

/ Cross-

sectional 

EU 
Eurostat, Lagas et 

al. (2015) 

Average travel time to 

cinema, shops, stations, 

banks, pharmacies, 

hospitals, schools 

NUTS-3 / 

Cross-sectional 
EU ESPON 

5. 

Taxation, 

Social 

Security, 

Insurance 

Regulations  

Country fixed-effects 

capturing country-level 

variations in institutional 

contexts 

National - - 

6. 
Access to 

Labour Market 
Job postings 

NUTS-2 / 2008 

- 2015 
EU Eurostat 

7. Cost of Living 
Cost of living score - 

interpolated 

Cities / Cross-

sectional 
EU 

Eurofound/ 

Eurostat 

8. 
Land 

Consumption 

Change in the total built-up 

area 

Local / 5-year 

interval 
EU 

Global Human 

Settlement (GHS), 

EOC Geoservice 

Maps4 

9. 
Mobility 

Pattern 

Modal usage proxied 

through car ownership 

NUTS-2 / 

Annual 
EU Eurostat 

Modal usage proxied 

through regional loading 

unloading of rail passengers 

NUTS-2 / 5-

year interval 
EU Eurostat 

Mean duration of 

commuting time one-way 

between work and home by 

sex and age 

National / 

Annual 
EU Eurostat 

10. Polycentricity 

People Concentration 

Index5 capturing flows of 

relocation of population 

NUTS-2 / 2018 EU ESPON 

   
POIs (Points of Interest) - 

interpolated 

Local / Cross-

sectional 
Germany Eurostat 
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11. Multilocality 

People Concentration Index 

capturing flows of 

relocation of population 

NUTS-2 / 2018 EU ESPON 

12. Tourism 

Number of bed places 

occupied in tourist 

accommodations 

NUTS-2 / 

Annual 
EU Eurostat 

Number of bed and 

breakfast establishments 

NUTS-2 / 

Annual 
EU Eurostat 

Nights spent in tourist 

accommodations 

establishments 

NUTS-2 / 

Annual 
EU Eurostat 

13. 
Work-life 

Balance 

Average number of usual 

weekly hours of work in 

main job, by sex, age, 

professional status, full-

time/part-time and 

economic activity 

National / 

Annual 
EU Eurostat 

Employed persons having 

more than one job by sex 

National / 

Annual 
EU Eurostat 

14. 
Health and 

Wellbeing 
Hospital days of in-patients 

NUTS-2 / 

Annual 
EU Eurostat 

15. 
Carbon 

Emissions 

Greenhouse gas emissions 
NUTS-2 / 

Annual 
EU Eurostat 

Air emissions accounts for 

greenhouse gases by sector 

National / 

Annual 
EU Eurostat 

Nitrogen dioxide 

concentrations - 

interpolated 

Cities / Cross-

sectional 
EU Eurostat 

17. 
Employee 

Productivity 

GDP per inhabitant (labour 

productivity*proportion of 

people employed) 

NUTS-3 / 

Annual 
EU Eurostat 

18. 
Regional 

Economy 

GDP 
NUTS-3 / 

Annual 
EU Eurostat 

Employment 
NUTS-3 / 

Annual 
EU Eurostat 

Employment by sex, age and 

educational attainment 

level  

NUTS-2 / 

Annual 
EU Eurostat 
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Household Incomes 
NUTS-2 / 

Annual 
EU Eurostat 

1. https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210923-1 

2. https://download.geofabrik.de 

3. https://utd19.ethz.ch/ 

4. https://geoservice.dlr.de/web/maps/eoc:wsfevolution 

5. https://gis-portal.espon.eu/arcgis/apps/sites/#/espon-hub/datasets/9404846ba61b57c08438043b4d66e936/explore?layer=0 

 

Table 6: Key control variables and corresponding data sources 

No. Factor 
Potential Indicators and 
Proxies 

Spatial/ 
Temporal 
Granularity 

Spatial 
Coverage 

Dataset 

1. Demography  

Population by age and 
sex  

NUTS-3 / 
Annual  

EU  Eurostat  

Population by sex, age and 
educational attainment 
level   

NUTS-2 / 
Annual  

EU  Eurostat  

Population change 
NUTS-3 / 
Annual  

EU  Eurostat  

2. 
Industry 
Composition 

Total employment in 
sectors including finance 
and insurance, information 
and communication, 
scientific and technical 
activities, and arts, 
entertainment and 
recreation 

NUTS-2 / 
Annual  

EU  Eurostat  

3. 
Science and 
Technology  

R&D personnel and 
researchers by sector of 
performance, sex  

NUTS-2 / 
Annual 

EU  Eurostat  

Patent applications by 
sector  

NUTS-2, NUTS-
3 / Annual 

EU  
Eurostat/ 
PATSTAT6  

https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210923-1
https://download.geofabrik.de/
https://utd19.ethz.ch/
https://geoservice.dlr.de/web/maps/eoc:wsfevolution
https://gis-portal.espon.eu/arcgis/apps/sites/#/espon-hub/datasets/9404846ba61b57c08438043b4d66e936/explore?layer=0
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4. 
Business 
Demography  

Business demography 
by NACE Rev. 2   

NUTS-3 / 
Annual  

EU  Eurostat  

Employer business 
demography by NACE 
Rev. 2   

NUTS-3 / 
Annual 

EU  Eurostat  

5. Crime  
Police-recorded 
offences  

NUTS-3 / 
Annual  

EU  Eurostat 

6.  https://www.epo.org/en/searching-for-patents/business/patstat 

Given the data limitations—specifically, the availability of Remote Working Arrangement (RWA) data only for 

the year 2020—this analysis adopts a cross-sectional design. Temporal sequencing of certain factors is 

informed by their proximity to observable impact, as identified through the survey conducted in Task 2.1. The 

factors temporally advanced include: tourism demand, population change, regional GDP, and transport 

accessibility. Due to the absence of direct data on population relocation attributable to RWAs and 

acknowledging its role as a mediator rather than an observable outcome in the causal chain, we instead rely 

on net population change and regional GDP as proxies for estimating impacts on the regional economy. Rather 

than including exhaustive control variables for GDP, tourist demand, and population change, an 

autoregressive specification is employed to reduce the dimensionality of the model while retaining 

explanatory robustness.  

The data pre-processing of Eurostat datasets involved several standard cleaning procedures: harmonization 

of column names, reconciliation of geographic identifiers with NUTS-2 nomenclature (particularly where 

updates have occurred), and aggregation or subsetting as required. Missing data are imputed using the mean 

of the respective indicator within a given NUTS-2 region. As an illustrative example, the preparation of data 

related to employment in sectors with high remote work potential followed a multi-step process. First, we 

queried employment statistics by NACE sector from the Eurostat database. We then ensured consistent 

column naming across datasets and matched NUTS-2 codes to their corresponding regional names by joining 

with an auxiliary dataset. Subsequently, we filtered the dataset to retain only employed persons, and then 

subset the data to include only the four sectors identified in WP1 as exhibiting a high propensity for remote 

work. These sector-specific employment values were then aggregated by NUTS-2 region and by year. Finally, 

we removed all observations where the NUTS-2 code ended with the suffix "ZZ", which indicates placeholder 

or non-standard regional entries. The resulting metric was then used as an indicator of industry composition. 

Two primary causal pathways linking RWA to regional GDP were tested: 

RWA → Relocation → Population Change → Regional GDP  

RWA → Tourist Demand → Regional GDP 

The following factors and associated indicators have been used (as summarised in the accompanying table): 

Remote Working Arrangement (RWA): RWA is operationalised as the annual change in the percentage of 

individuals who 'usually' work from home, based on the Eurostat definition. ‘Usually’ refers to individuals who 

https://www.epo.org/en/searching-for-patents/business/patstat
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perform any productive work related to their current job at home for at least half of their working days within 

a reference period of four weeks. This data is available at the NUTS-2 level from Eurostat for the year 2020. 

Digital Infrastructure Accessibility: Measured as the percentage of households with home internet access, 

using Eurostat data at the NUTS-2 level. 

Industry Composition: Derived from Eurostat employment statistics at the NUTS-2 across four sectors which 

were identified via the large-scale survey in WP1 as having a high propensity for remote work - finance and 

insurance, information and communication, scientific and technical activities, and arts, entertainment and 

recreation. 

Demographic Controls: Age, gender, and education-related variables are used to account for differential 

propensities to engage in RWA. These include: percentage of the population aged 20–34; percentage with 

tertiary education (levels 5–8); and total male and female population figures per NUTS-2 region, all sourced 

from Eurostat. 

Quality of Life: In line with the recommendations of Task 1.1, we adopt quality of life as a key factor in the 

model, in place of the more narrowly defined concept of access to amenities. This decision is driven by both 

the holistic nature of the Quality of Life construct and the availability of robust data. Quality of life is proxied 

using the Territorial Quality of Life – Good Life Enabler Index, developed by ESPON (available for 2019 at the 

NUTS-2 level). This composite index captures multiple dimensions of well-being by integrating personal, social, 

and ecological indicators, including elements such as housing affordability, access to basic utilities, education, 

and healthcare services, among other regional determinants of well-being. 

To further enrich this measure, we incorporate regional crime statistics—specifically, police-recorded offenses 

as reported by Eurostat—in order to account for additional dimensions of perceived and actual safety within 

regions. 

Tourist Demand: Estimated using the number of bed places occupied in tourist accommodations, sourced 

from Eurostat at the NUTS-2 level. 

Transport Accessibility: Proxied by the total length of road and rail networks in each NUTS-2 region, based on 

Eurostat data. 

Taxation, Social Security, and Insurance Contexts: Recognizing country-level variations in RWA adoption (as 

highlighted in Deliverable D1.1), a country-level dummy variable is introduced to capture these institutional 

differences in a simplified form. 

Finally, standardization (z-score normalization) on numeric variables is performed prior to the model run, 

ensuring comparability across units. 

 

5.4.3 Model run and initial results 

As described previously, running the model requires first translating the identified causal chains into a 

relationship matrix, as illustrated in Figure 26. Alongside the structural representation, a separate matrix is 

constructed to encode the strength (or weight) of the inter-factor causal relationships. To assess the upstream 

influence of parent variables on regional GDP in 2022 (i.e., “looking up” the network), the R-Map model is run 

with regional GDP in 2022 set as the focal outcome. The network identifies three immediate parent nodes for 
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this variable: population change (2022), tourist demand (2022), and GDP (2020). As shown in Figure 27, GDP 

in 2020 emerges, as expected, as the most influential predictor. Population change in 2022 contributes 

positively, though the effect is extremely modest. Tourist demand in 2022, in contrast, does not exhibit 

statistical significance. 

 

Figure 26: Causal Relationship Matrices (top and middle) and Weight Matrices (bottom), where the underlying values 

range from 0 to 1 (as reflected by the colour gradient), but are displayed as rounded values of 0 and 1 for visual clarity. 
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Figure 27: Parent Nodes’ Influence on Regional GDP (2022). Slope 0, 1 and 2 correspond to GDP in 2020, population 

change in 2022 and tourist demand in 2022, respectively. 

 

Since both population change and tourist demand are influenced by RWA in the network, a subsequent step 

focuses on assessing the significance of RWA in shaping these intermediate variables—effectively “looking 

down” the network. These results are presented in Figures 28 and 29. In Figure 28, population change in 2020 

is confirmed as a strong and significant predictor of population change in 2022. While RWA (2020) and quality 

of life (2020) show moderately positive and negative associations respectively, neither effect is statistically 

significant—their coefficients are not distinguishable from zero. Transport accessibility (proxied by road and 

rail network length) and crime rates similarly display negligible influence, with low and statistically 

insignificant coefficients. Figure 29 presents the analysis of tourist demand in 2022. Here, tourist demand in 

2020 is the most robust and statistically significant predictor. The influence of RWA in 2020, while directionally 

positive, is not statistically significant—its effect size is small and indistinct from zero. 
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Figure 28: Determinants of Population Change (2022). Slope 0, 1, 2, 3, 4 and 5 correspond to RWA in 2020, quality of 

life, population change in 2020, total rail length in 2022, total road length in 2022 and crime in 2022, respectively. 

 

 

Figure 29: Determinants of Tourist Demand (2022). Slope 0 and 1 correspond to RWA in 2020 and tourist demand in 

2020, respectively. 

 

To further investigate the drivers of Remote Working Arrangements (RWA), the model is run with RWA in 2020 

as the focal factor. Country-fixed effects are incorporated by introducing a factorised country-level variable. 

As shown in Figure 30, demographic variables, specifically the overall male and female population, emerge as 

the strongest predictors—male population displaying a negative effect, and female population a positive one. 

This divergence may reflect underlying gender-based differences in occupational structures and remote work 

feasibility. In addition, internet access, employment in sectors with high remote work potential, and the share 

of population aged 20–34 all display statistically significant positive associations with RWA. At the national 

level, Figure 31 highlights substantial positive fixed effects for several countries, including Germany, Finland, 

France, Ireland, Italy, Belgium, and Portugal. Furthermore, negative country-level effects are observed in 

Switzerland, Norway, Iceland, and several Eastern European countries, such as Cyprus, Croatia, Hungary, and 

Latvia. 
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Figure 30: Key Drivers of RWA (2020). Slope 0, 1, 2, 3 and 4 correspond to internet access in 2020, employment in sectors 

with high remote work potential in 2020, total male population in 2020, total female population in 2020 and percentage 

of population aged 20-34 in 2020, respectively. 

 

5.5 Interpretation of model outputs 

While the model does identify significant drivers of RWA—including demographics, digital infrastructure, 

sectoral employment, and country-specific institutional contexts—its downstream influence on regional GDP 

remains statistically inconclusive within the examined causal chains. This limitation likely reflects the time lag 

required for such macroeconomic effects to materialize. In addition, introducing spatial dependencies would 

enable the exploration of neighbourhood spillover effects—a particularly relevant consideration in regional 

development analysis. 

From a modelling perspective, these preliminary results highlight several priorities for subsequent work, 

including, addressing data gaps and increasing temporal and spatial resolution, advocating for open access to 

proxy indicators that better capture relocation, telework adoption, and related structural changes, and testing 

the model across different territorial scales for generalizability. Furthermore, future methodological 

enhancements could include – causal structure learning from data, incorporation of spatial dependencies to 

capture neighbourhood effects, and use of hierarchical Bayesian models to improve robustness across scales 

and contexts. 

In summary, while initial results do not confirm a statistically significant link between RWA and regional GDP 

—at least within the scope of the current cross-sectional data and model assumptions, they provide crucial 

insights into the determinants of RWA and lay the foundation for more nuanced, dynamic, and spatially-aware 

modelling approaches in future research. 



 

Page 86 of 110 
 
D2.1: The R-Map model (v2), 31/03/2025 

GA 101132497 
 

 

Figure 31: Country-Level Effects on RWA 

 

5.6 Extending the R-Map model to the platform 

The model conceptualization in Task 2.1, which has been implemented here in Task 2.2 forms the core of the 

R-Map modelling. While both scientific insights and policy implications can be derived from the modelling, it 

is by no means an operational platform that can be used and adapted to different modelling contexts, where 

new data inputs and model hypotheses are often encountered. 

Hence, apart from the modelling itself, other functionalities are needed for users to include new datasets, 

from which the model could read data, and both inputs and outputs can preferably be stored and visualized. 

At the same time, the model can be fine-tuned and adapted according to user demands. Thinking about such 

type of functionalities for not only modelling experts but also a wider community of users, it already means, 

if not a sophisticated software design, but a design of modularized functionalities that are to be built on top 

of the modelling core and can be exposed with a user-friendly interface. Below is a list of modularized 

functionalities to be added on both ends of the modelling core of the Bayesian network: 
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• Data harmonization and storage: Spatial data in different formats from different sources are to be 

standardized to ensure compatibility, consistency and interoperability. It specifically addresses 

discrepancies in formats, spatial units/scales, temporality, semantics. 

• Preliminarily data exploration: Before stacking multiple datasets and feeding them all together into the 

model, it is necessary to examine basic statistics of each dataset so that to build preliminary knowledge 

about data quality (e.g. in terms of missing entries in spatial units, or existence of outliers), 

uncertainties, and simple linear correlations between sample pairs of variables. 

• Inputs preparation for modelling: The Bayesian network uptakes input data with explicit definitions 

upon prior and likelihood distributions or functions. In the setup of the R-Map model, these are to be 

loaded into the model from different sources. The prior distributions regarding factor relations are 

registered in matrix, and inputs indicators as variables are to be read from the harmonized datasets, so 

that a likelihood function can be built by using these variables, hence, they need be extracted and get 

prepared to be fed into the model. And this requires extra application programming interfaces (APIs) 

as a set of modularized functionalities to achieve. 

• Modelling: This is the core of the R-Map model. In the R-Map model, the Bayesian network differs 

slightly from the conventional Bayesian Belief Network. At each node of the R-Map model it takes 

continuous values of a factor as opposed to the probability of a discrete status, whereas the belief or 

prior knowledge is set to capture the relations among factors rather than the status of individual ones. 

This equips R-Map with a character of mixing conventional Bayesian Network and Bayesian regression 

models and can be extended into spatial and temporal domains as the regression can easily be modified 

into spatiotemporal-based. 

• Outputs of inference and predictions, and storage: Once the model is fit or trained (in the context of 

data science) with existing datasets, it can be used to simulate different scenarios of possible 

modifications of factors, such as the drivers, to predict corresponding possible outcomes or impacts. 

These scenarios can be useful information to assist decision-making and need to be stored. Just as the 

module of data harmonization, the storage will ensure standardized formats, spatial units/scales, 

temporality, and semantics. 

These modularized functionalities form the guideline of the design of the R-Map platform, rather than the 

core model alone. As an illustrative example, as shown below in Figure 32, each one of these modularized 

functionalities is expected to be equipped with APIs as the actual functions aiming at specific tasks, such as 

aggregating or disaggregating spatial units through resampling algorithms in harmonizing data in different 

spatial units. The development of such functionalities may extend well into further WPs, but are still closely 

linked to Task 2.1 and 2.2. One should note that this is not an exhaustive and accurate list of functions in each 

of the module, but just a demonstration of how they are connected to form the guideline of design. In the 

following sections, all modules of functionalities apart from the R-Map core model will be walked through 

with more details. 
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Figure 32: Major components and key functionalities of the R-Map model implementation for extending the model to a 

platform 

5.7 Data harmonization and storage 

5.7.1 Preliminary handling 

Before putting the datasets from different sources in different formats together for data harmonization, 

preliminary check will be conducted to examine data quality and metadata. Many datasets come along with 

data quality documentations, which provide reference for screening data and identifying missing data. 

5.7.2 Database formats and storage 

The input to the R-Map model needs to be consistent in formats, spatial units/scales and without ambiguous 

semantics. Even if the model can take inputs from different time points, for instance, population data from 

both t1 and t2 are used to include temporal effects, it is crucial that these datasets should be resampled into 

consistent spatial units so that boundaries can be aligned once properly georeferenced. Visually, as shown 

below in Figure 33, the harmonized datasets should be with same granularity. Taking datasets in the 

Netherlands as an example, all the data in raster or vectors (polygons, polylines and points) should be 

resampled into the same spatial units, in the case below, the municipality boundaries, which is an even higher 

resolution than the NUT-3 level. At the database level, such vector data is stored as regular GIS relational data, 

with rows as instances of observation, which is the spatial units in this example, and columns as attributes 

harmonized from different data layers. In Python implementation of the R-Map model, this table is loaded as 

a GeoPandas dataframe, but can certainly be exported into common formats of Geopakage (*.gpkg), 

GeoJSON, CSV, etc. 
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Figure 33: Harmonizing multi-source datasets in different formats into consistent spatial granularity and finally stored 

as a GIS relational table. Using Discrete Global Grids (DGG) like the H3 Hexagonal Grid as seen in the left, is currently 

considered for the ultimate harmonization of scales and discretization of data and probability distributions 

 

Not all the datasets should be harmonized into vector format. Raster or gridded datasets are also allowed in 

storage, which can be resampled flexibly resampled into NUT2 or 3 level on demand in later phases rather 

than losing the original details soon as being stored. They should be with the same requirement of being 

consistent with resolution. When raster datasets are stored, they can simply be GeoTIFF, but once loaded in 

the Python implementation of the R-Map model, the Xarray is preferred. 

In both cases of vector and raster data harmonization and storage, the metadata will also be standardized 

with common metadata schemas (e.g. ISO). So far, with the absence of many possible datasets and proxies, 

this metadata handling has not been implemented yet but still envisioned as the final activity by the end of 

WP2. 

5.8 Preliminarily data exploration 

Directly sending data into models would generate outcomes that are difficult to be interpreted. Almost 

always, knowing the data before modelling is beneficial for reliable interpretation of modelling outcomes and 

detecting spurious results. Understanding the data means knowing not only the quality of itself, but also the 

statistical nature of the data, simply because many models such as the R-Map are statistical, hence, the 

conclusions to be derived are also statistical by nature. 

5.8.1 Visualizing basic stats: Histograms, box plots, scatters 

Some simple statistical characters such as probability distributions and extreme values ranges can easily 

distort the outcomes of statistical analysis, such as correlation analysis. Most models assume that the data 

follows a certain distribution, like the normal distribution. But extreme values are, by definition, in the tails of 

the distribution. If the model isn’t designed to handle those tails properly, the presence of extreme values can 

https://h3geo.org/
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throw off the estimates. For example, the mean is sensitive to outliers. The problem also applies to model fit. 

If a model is trying to minimize squared errors, like in linear regression, a single extreme value can have a 

large influence on the regression line. The line might be pulled towards the outlier, making the model less 

accurate for the majority of the data. Another thing is that extreme events are rare. So in the dataset, there 

might not be enough of them to model their behaviour accurately. 

Such statistical characters can be preliminary explored through visualizing histograms of the data, or box plots 

of it. One can even visualize the scatter plots without drawing correlations statistically to see how distributions 

and extreme values behave visually. 

5.8.2 Correlation analysis 

One step further into data exploration is to examine pair-wise correlations before drawing upon multiple 

factors together to inspect more complicated relations. This is because a significant correlation is a 

precondition for hypothesizing a causal relationship, in the absence of which there is no point for going further 

into the trouble of updating causal Bayesian links. Such one-to-one elementary correlation analysis is 

sufficient to build ideas about how strong and uncertain the correlation can be even within a pair of factors, 

and how such correlation would drift towards extremes. For instance, as shown in Figure 34 below, given 

some data of any two factors indicated by variable x and y, as soon as the scatter plot is visualized, extreme 

values or outliers can be further discussed. By further choosing a regression model, such as a linear model as 

shown in the figure, the uncertainty of the linear model of p(y|x) can be quantified. In the figure, a few sample 

models drawn from a quantified interval of the model fit uncertainty is shown. It gives a sense of reliability of 

using statistical regression-based analysis, which impacts later the interpretation and conclusion regarding 

the linear relationship between two factors. 

 

 

Figure 34: Preliminary exploration of simple statistics through pair-wise correlation 

 

However, such preliminary exploration can move a few steps further not only due to the statistical nature of 

the data, but also regarding the model choice. As another illustration, an undesirable complex model is 

intentionally used to show how model complexity can overfit the data at hand and expectedly produce 

spurious accuracy assessment in a later phase, which in turn produces misleading interpretations and 

conclusions (Figure 35). 
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Figure 35: Preliminary exploration of simple statistics through pair-wise correlation 

 

5.9 Outputs of inference and predictions, and storage 

Very similar to the first modularized functionality of data harmonization and storage as illustrated in section 

5.7, the modelling outcomes should be harmonized and stored considering the issue of formats, spatial and 

temporal units/scales, and sematic clarity. For vector data, shapefiles are common but have limitations. It is 

recommended to employ the more commonly used GeoPackage or GeoJSON. For raster, format in GeoTIFF is 

standard. Considering the potential of creating a large number of scenarios and the issue of data sharing, 

cloud-optimized formats like COG for scalability can also be considered. 

Together with data harmonization, what can be envisioned but not implemented yet is designing the 

database. This is especially true if the model along with the reproduction of the modelling activities are to be 

sustained and maintained long-term. Traditional GIS databases like PostGIS (PostgreSQL extension) are 

important, and so are cloud solutions like Google Big Earth Engine or AWS S3 for large datasets. Version 

control might be tricky with large datasets. Hence, platform or repository with both version control and large 

data handling capacity is expected, such as the Git LFS. Metadata and documentation are crucial. Standards 

like ISO should be set. 
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6. Reflections on the R-Map model 

The development of the conceptual R-Map model for assessing the impacts of Remote Working Arrangements 

(RWAs) required a careful balance between complexity and tractability. While the aim was to develop an 

integrated assessment framework to capture impacts resulting from RWA, it was essential to keep the scope 

of the model manageable without significantly compromising the number of key factors. The implemented co-

design approach proved to help capture the rich and diverse experiential knowledge of the involved partners, 

advisory board members and domain experts and merge it with the comprehensive insights from literature 

and expert interviews collected in WP1. To structure this effort, methodologies and terminology from 

participatory systems mapping were applied, enabling the construction of a conceptually grounded and 

stakeholder-informed model. The resulting conceptual R-Map model laid the foundation for implementation. 

Given practical limitations—particularly regarding data availability and interpretability—the implementation 

focused on a representative causal chain as a proof-of-concept, using a Bayesian approach for 

operationalisation. 

  

6.1 Relevance value and validity of the R-Map model  
To avoid misconceptions about the purpose and the making of the R-Map model, it is imperative to consider 

the "doubly-complex" nature of the phenomenon that it aims to model. Furthermore, it is critically important 

to note that it is not only meant to be "a model of" a phenomenon but "a model for" contemplating our 

interferences with and our situation concerning a phenomenon. In other words, we are not aiming to make a 

replica of a large geographical system to predict its behaviour over time but rather aiming to explicate a 

collective understanding of the inner workings and mechanisms underlying some complex and intertwined 

chains of causes and effects in such a way as to get a grip on how our policies and arrangements may help or 

hamper our abilities to steer such complex dynamics of change. The double complexity label is borrowed from 

Portugali (2011) in reference to complex phenomena that are not only complex from a geographical (spatial, 

temporal, social) point of view but also from an anthropogenic dynamic stance brought about by political 

aspirations, visions, and decisions of governance and planning bodies. In other words, here we are not only 

dealing with getting a grip on "how things change" but also on "how to change things". Simply put, the model 

cannot possibly satisfy those who seek an accurate and comprehensive (scientific) large-scale impact 

assessment model, nor will it satisfy those who are looking for easy-to-remember lessons or catchy 

conclusions for policy development in the form of linear rules of thumb.  

Thus, our modelling endeavour is based on a stance in between these two extremes, i.e. the geographical 

modelling science and policy analysis. The main goal of this task is to consolidate "a model architecture" for a 

Bayesian Network in Task 2.2 that can be reasonably traced back and justified concerning the findings of the 

partners from the literature as well as their experiential knowledge and expert intuition about the pertinence 

of the factors and their causal connections to one another. As far as expert opinions and literature findings 

are concerned, the partners from the sister project WinWin4WorkLife, who were invited as peers to our 

meetings to double-check our findings, confirmed that the resultant model architecture and its constituent 

factors conform to their findings and expert intuitions. Likewise, the preliminary implementation results are 

consistent with the findings of WP1, particularly concerning the drivers of RWA. Nonetheless, the model’s 

ultimate utility (or futility) in capturing the urban–rural divide and for policy analysis requires further 

development through Tasks 2.3 and 2.4 and the regional case studies planned in WP4. These future efforts 

will allow for finer-grained data integration and context-specific model refinement, essential for validating and 
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expanding the framework. At this stage, the model should be seen as a minimal yet expandable system, 

offering a foundation for an adaptive and scalable integrated assessment tool. 

Given the fact that the implementation of the R-Map model is only a subset of what has been conceptualized 

in Task 2.1, interpreting the model outcome back to the context of reality should always be with caution. As 

long as the prior knowledge of the factor relations are constrained by the co-created knowledge or 

perceptions, the implementation of the model does not guarantee a quantitative consistency across geospatial 

locations and scales as people's perceptions may not capture such location and scale sensitive dynamics. This 

in turn highlights the value of using Bayesian based modelling approach to leverage information in the 

measurements, or actual data, to balance out epistemological limitations. Yet, the challenge of finding reliable 

datasets as indicators or proxies for the factors leaves potential gaps between the indicators that can be found 

and the actual desirable data expected for each of the factors. Enforce an interpretation of derived 

relationships from poorly selected proxies apparently generates misleading conclusions and may further 

misinform potential strategies for policymaking. 

However, from a qualitative level, the model as it is right now can be considered to be a useful representation 

of a collective systemic understanding of a complicated matter (a doubly complex system), i.e. the compound 

impacts of remote working arrangements and the way through which multiple short-term and mid-term 

effects of RWA at disaggregated geospatial resolutions (local phenomena) seem to lead to longer-term and 

more aggregate impacts (global issues). In that sense, the model architecture per se can be already used as a 

reflective device for policy analysis and deliberations in participatory or democratic decision-making 

processes. 

  

6.2 Limitations of the R-Map model 

We acknowledge several important theoretical and practical limitations of the R-Map model that cannot be 

simply addressed by mere larger investments in time and effort, but rather those require a different approach 

or different studies altogether. The first limitation is of a theoretical and methodological nature resulting from 

the inherent inadequacy of reliance on the collective intuition of a group of experts for understanding or 

mapping all relevant factors of influence and impact, not least due to the limited state of research in several 

dimensions relevant to RWAs. Even if the scope of the R-Map model was to be confined to a single domain 

perspective such as the economic impacts of remote working, a much deeper approach would be required to 

address the entirety of the subject; let alone the difficulty of collating the various sorts of impact factors at 

inherently incommensurate spatial or temporal scales or social bearings. Thus, instead of the disciplinary 

representativeness or adequacy of the model, its integrality is claimed in two senses: the multi-disciplinary 

integration of views and the operational integration potential of the model in participatory policy 

development cycles. The second limitation of the model mainly arises out of the incompatibility and 

incommensurability of the spatial and temporal scales of analysis and the definition of the indices on the one 

hand and the contextual impertinence of the indices when used in atypical social and political/administrative 

contexts other than those typically considered as globally frequent or pertinent.     

The model architecture per se can be judged here in terms of its inherent limitations being related to the 

impossibility of ensuring a complete (diverse and inclusive) representation of stakeholders and their views in 

two important steps: 1) defining what factors must be included in the model architecture (the nodes), and 2) 

defining what links (causal relations) need to be modelled (to be eventually quantified) in the model. In the 
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absence of a presumably perfect or complete benchmark, we are effectively settling for a rather pragmatic 

approach to the consolidation of the conceptual model. We firstly relied on the reports made by the 

consortium partners in WP1 (which are based on a wide literature review) to curate a set of potentially 

relevant factors to be included in the model; asked the partners to help us sift through the list of potentially 

relevant factors to pick a handful of more relevant ones; contemplated together with the consortium partners 

on which links are the most important ones to be modelled; and out of those links we chose a handful of the 

least ambiguous ones.  

There are still several limitations and challenges that remain concerning the current modelling effort, 

particularly in relation to the quantification of conditional probabilities within the classical Bayesian 

framework and therefore our choice of a Bayesian regression approach. A key constraint lies in the limited 

availability of reliable indicators or proxy variables at spatial and temporal scales that are sufficiently 

commensurate and compatible to support wide-ranging geographic analysis. Perhaps the most significant 

theoretical limitation—one that cannot feasibly be addressed within the scope and timeframe of this project—

is the expectation that the complex model architecture could enable simulation of impacts at mid- to long-

term time horizons. While such network-based architectures are well suited to representing interconnected 

systems, the absence of relevant time-series data and the practical constraints associated with running 

iterative simulations through a Bayesian Network preclude any meaningful longitudinal analysis at this stage. 

Consequently, the initial implementation relies on a “before-and-after” snapshot approach, rather than a 

dynamic, temporally continuous simulation. 

The challenge of finding proper indicators or proxies also poses the limitation of the practical value of the 

model. A proxy with poor representativeness of a factor leaves potentially significant gaps in interpreting the 

modelling outcomes into the original context of the model hypothesis. Together with the uncertainty of model 

hypothesis, such data or proxy representativeness adds another layer of uncertainty of how far such R-Map 

model implementation can reach either end of scientific validity and practical policy informing. 

Moreover, it must be acknowledged that the implementation of the R-Map model is not immune to the risk 

of ecological fallacy. Although the co-design process provides reasonable confidence that certain causal 

relationships between RWAs and their effects exist at the aggregate level, it cannot be definitively asserted 

that these effects would not have occurred in the absence of RWA. While the current operationalisation 

incorporates an autoregressive specification as a partial workaround to control for baseline conditions, it 

underscores the importance of having high-frequency temporal data capable of being detrended to isolate the 

effects of pandemic-induced shocks on the organisation of work. This challenge is well illustrated in the 

findings of the Netherlands Environmental Assessment Agency (Planbureau voor de Leefomgeving), whose 

report on the consequences of remote working for living, working, and mobility (Buitelaar et al., 2021) 

leverages significantly more granular data to disentangle such effects. Therefore, any application of the R-Map 

model must be accompanied by a clear articulation of the uncertainties and limitations inherent in the current 

version of the model. 

 

6.3  Disclaimer: What is the R-Map model and what is it not? 

In the spirit of the well-known adage— “all models are wrong, but some are useful” (a paraphrased version of 

George Box’s classic observation)—the R-Map model is no exception. It is not intended to serve as a 

deterministic or all-encompassing prediction tool, nor should it be mistaken for a “crystal ball” capable of 
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accurately forecasting the full socio-economic and environmental impacts of Remote Working Arrangements 

(RWAs). Rather, its value lies in its potential as a decision-support tool within the context of Participatory Policy 

Evaluation (PPE). In Task 2.1, we have focused on capturing the collective understanding (based on insights 

produced in WP1) of the project partners, advisory board members and invited experts as a de-facto group of 

experts of the existing systemic and causal relationships between factors that are somehow related to the 

remote working arrangements (RWA), from the most immediate and disaggregated effects to the mediators 

and the ultimate and aggregate impact factors of the changes in the society, economy, and environment. In 

this sense, the full potential of our approach is yet to be tested in scaling up participatory system modelling 

workshops. Even though conducting such mass-scale participatory modelling workshops falls beyond the 

scope of the current project, the idea of scalability is still part of the ethos of our modelling approach. Since 

the beginning of the modelling process, we did not have the illusion that such complex and systemic 

relationships could be possibly captured into any traditional regression-based approaches grounded in 

frequentist probability theory. Such models, even when effective in making ex-post predictions, typically lack 

explanatory power regarding the mechanisms underlying complex, multi-level dynamics—particularly those 

at the intersection of social, spatial, and economic change. Furthermore, frequentist models typically lack the 

flexibility to incorporate new incoming data dynamically. Moreover, they are structurally incapable of 

incorporating the experiential and intuitive knowledge of expert participants, which is central to 

understanding the lived realities and policy implications of RWAs. Thus, in Task 2.1 we aimed at making a 

model as a reflective medium by which a group of experts or potentially a much larger group of stakeholders 

can share and delineate their collective understanding of how one driver or factor leads to another to impact 

our living environment in their social, spatial, economic or socio-economic aspects. However, this collective 

understanding of the causal directional linkages between the factors cannot be mistaken for the "true" way in 

which these factors relate to one another, for it is clear that our collective understanding of the world, no 

matter how large our collective, cannot be assumed to represent the objective truth (rhetorically speaking). 

Therefore, the focus shifts from replication of real-world dynamics to policy relevance. 

The model as a predictive tool will be almost certainly wrong in one way or another, but it can be a useful 

medium for collectively reflecting on the efficacy of our public and private policies surrounding the relatively 

new widespread phenomenon of remote work. This consideration motivates a wider validation approach that 

will not solely focus on the quantitative validation of the predicted patterns but also on the qualitative 

validation of the model in terms of ascertaining its usefulness for practical policy analysis tasks. In 

epistemological terms, in this approach, we seek to utilize the multitude of views and foci of the expert 

participants to highlight the important links between factors among a multitude of other rather less important 

links. In other words, we are employing the human intuition of the participants to sieve through the very 

overwhelmingly large pool of potential factors and their links to find the most important factors and their links. 

This innately human capability is arguably the most significant hallmark of natural intelligence that provides 

an advantage to all possible quantitative approaches in that it can efficiently ignore noise and trivia to focus 

on what matters from a decision-making standpoint concerned with the sustainability of our new ways of life 

and the potential long-term implications of remote working if spread much more dispersedly and deeply into 

the fabric of our human society at large.  

From a practical standpoint, the challenge is not computational capacity, but rather data readiness. 

Attempting to model too many factors—especially across geographies and time—introduces significant 

hurdles in data curation, spatial harmonisation, and the identification of reliable indices or proxies. Even if 

such a large-scale model were technically feasible, it might be less effective as an explanatory tool. This is a 

commonly known issue in systems modelling literature about Large Scale Models that excessively detailed 
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models may reduce interpretability and hinder engagement from non-technical audiences—limiting their 

educational and deliberative potential. 

 

6.4 On the quantification of the R-Map model 

Due to the immense challenges in data collection, data collation, harmonization, discretization, and even mere 

probabilistic interpretation of existing data distributions, we have inevitably made quite a few pragmatic 

choices to go forward with the modelling endeavour to showcase the partial quantification of the R-Map 

model towards creating a back-end for the intended policy analysis tool/dashboard to address Objectives 3, 

4, and 5 of the project. However, it must be noted that reaching high accuracy, explanatory power, and 

reliability at the same time without undergoing multiple additional iterations of model building, evaluation, 

theorization, and justification (according to the famous cycle of Design Science Research as proposed by 

Pfeffers et al. (2007) is not realistic. In particular, we envisage that the back-end modelling requires further 

progress in the following directions: 

• Spatial [and Temporal] Data Harmonization: utilizing Discrete Global Grids (DGG) can provide a globally 

consistent and convenient framework for discretizing spatial data and allow for harmonization of inputs 

of the processes, be they probability distributions or geographical distributions of context variables.  

• Methodical Generalization of the Bayesian Belief Network: the current quantification approach is a 

mixture of the BBN model architecture and Bayesian Regression, specifically, Bayesian regression nested 

within a BBN structure. 

• Technical Generalization of the Back-end Model: the current set up of the R-Map model is such that 

changing the input model architecture (the DAG network) is not impossible but requires manual work in 

Python. However, the aim is to generalize and vectorize the model so much so that the model architecture 

can be inserted as an input variable (a tensor/matrix) and that the policy-analysts using the model can 

perform inquiries for investigating different qualitative understandings of the impact causal chains.  

In short, every feature of the dashboard tool or the policy analysis front-end has to be effectively developed 

in tandem with a methodical possibility incorporated within the backend model. These methodical 

developments themselves require iterative cycles of mathematical work and Python workflow development. 

Nevertheless, the most important bottleneck ahead of the developments, be they methodical or technical is 

the identification of suitable datasets that can be ideally extracted from two snapshot moments of before & 

after the introduction of RWAs as well as sufficient spatial resolution. 
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7. Conclusions 

The most concrete conclusion to be drawn from task 2.1. and 2.2. are the consolidated R-Map model 

presented in Figure 16 and the entire workflow for the implementation, illustrated for one causal chain. The 

conceptual model shows the set of most important factors and their systemic or structural links or causal 

relationships leading to major impact factors relevant to the general public at global scales. This model 

architecture can be said to have emerged organically or to have been collectively discovered through a series 

of disciplined conversations deeply rooted in local and experiential knowledge of the participants from diverse 

geographical contexts and their idiosyncrasies. Hence, the structure of the model can be taken as a reliable 

agenda for quantitative research in the next steps of the process. 

As extensively explained in the discussion on the limitations of the R-Map model, at this stage of development, 

one cannot make clear-cut conclusions about [how exactly] what leads to what in terms of the impacts of 

RWA. In that sense, the conclusions are rather methodological and intermediary rather than being final, 

factual, and revealing in terms of causal explanations or predictions. The most important conclusion so far is 

that the combination of PSM and Bayesian approaches to causal and probabilistic graphical modelling are 

suited to the complicated/wicked problem of policy analysis and integrated (i.e., multi-sectoral) impact 

assessment at hand. During implementation, the R-Map model differentiates itself from the conventional BBN 

and has been equipped with its own characters regarding encoding explicitly people's perceptions towards 

the relations among the factors along the links of the Bayesian networks, which can be modelled by integrating 

Bayesian regression among the factors. Technically, such adaptation of the original BBN structure brings 

flexibility of extending the modelling of the relations and factors by using different regression models, which 

can be simply extended as spatial regression problems to produce geographically discriminative patterns, and 

it can readily be mapped and visualized. Obviously, such flexibility is a "double-edged sword" that also brings 

the problem of model choice and arbitrary hypothesis. Hence, the boundary of extending such Bayesian 

network should be discussed further along with the future insights expected from following tasks. 

Apart from the model implementation, challenges of finding proper datasets as indicators or proxies of the 

factors have been encountered. Despite such challenges, one can see that the frequentist statistical alternative 

approaches to this problem would only make it more confusing, more reductive, less participatory, and 

arguably less explanatory and thus less useful as to the purpose of the model as a policy analysis and 

deliberation tool. Based on the formal implementation of the R-Map model and illustration of one causal 

chain, we argue that we have gained methodological confidence that the R-Map model is gradually taking a 

useful shape while we are systematically sifting through a multitude of things to be included in the model in 

favour of highlighting and eliciting the essential variables that can help us get a grip of the transitional impacts 

brought about by the RWA.  There is yet much quantitative work to be done on both the model and data but 

so far, the model architecture has stabilized into a shape that can be arguably labelled as collectively validated, 

systematically consolidated, and technically viable. It must be noted that the very scoping and identification 

of the inner systemic links in such a large-scale impact assessment model is far from trivial, especially when 

regarded from a usability and utilitarian perspective of prospective stakeholders.  
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9. Annex 

9.1 Annex 1 

The table below lists the names of participants in the co-design workshop. 

# First Name Last Name Partner Institute 
1 Margarita Angelidou Q-PLAN 

2 Henk Bouwman METREX 

3 Mariana Faver Architecture 
Urbanism Bureau 
Thuis (AUBT) (AB 
member) 

4 Katharina Fellnhofer RIM 

5 Johannes Flacke UT 

6 Lisa Fontanella UB 

7 Mandy  Fransz RWW (WFA) 

8 Barbara Glinser Centre for Social 
Innovation (AB 
member) 

9 Theodora  Istoriou AUTH 

10 Ozge Karanfil KU 

11 İlker Kayı KU 

12 Eirini  Kelmali SEERC 

13 Sibel Kiran KU 

14 Anna  Konstantinidou WR 

15 Vidit Kundu UT 

16 Richa Maheshwari University of Liège 

17 Konstantina Mataftsi WR 

18 Thomas Mone AUTH  

19 Pirouz Nourian UT 
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20 Hakan  Orer KU 

21 Karen Oude Hengel Netherlands 
Organisation for 
Applied Scientific 
Research (TNO), 
(AB member) 

22 Panagiotis Papanikolaou Arx.Net 

23 Karin Pfeffer UT 

24 Dimitra  Plastara AUTH 

25 Georgia  Pozoukidou AUTH 

26 Elli Roma-Athanasiadou Q-PLAN 

27 Efstratios Stylianidis AUTH 

28 Vinod Subramaniam Twente Board 

29 Jasmijn Tiemersma CBS 

30 
Dimitris Tselios 

NOMAD365 (AB 
member) 

31 Cihan Urhan Turkish 
Confederation of 
Employer 
Associations (TİSK) 
(AB member) 

32 Jon Wang UT 

33 
Anders Wilandson 

Stockholm Region 
(AB member) 

34 Shi (Tracy) Xu SURREY 

35 Savas Zafer Sahin Citizens' Assembly 
of Ankara (AB 
member) 

36 Nikos  Zaharis SEERC 

 

Annex Table 1: Co-design workshop participants.  
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9.2 Annex 2 

The table below shows the different factors as agreed during table discussions in the co-design workshop. 

Table Factors 

1.1 

Decentralisation and new centralities, diversification/ land-use change, urban 
sprawl/densification and land take, access to local amenities and opportunities, demand 
for larger housing, digital infrastructure accessibility, caring, access to support network, 
total number of burnouts, housing affordability, co-living and community building 

2.1 

Shift in modes of transport, acceptability, cost of living, multilocality, communication and 
information quality, work life balance capacity, accessibility to public services, individual 
characteristics, urban/rural divide, gender distribution, household dynamics related 
burdens 

3.1 
Internet quality (affordability) and performance, flexibility (location), flexibility (work 
time), loneliness, insurance, level of inequalities, city size 

4.1 

Level of digital capacity, digital infrastructure, gentrification, care responsibilities, land 
consumption, energy demand, attachment and commitment, gender equality, city 
facilities (transport, health care, amenities), health & safety outside office, employee 
productivity, precarious job conditions, labour market, mental health 

5.1 
RWA literacy, autonomy (individual), labour participation, connectivity, precarity, 
inequality 

 

Table 2: Key factors arrived at after table discussions in the UT co-design workshop 
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9.3 Annex 3 

The table with impact factor definitions is provided below. 

# Factor Type Definition Rationale 

1. 
Health and 
Wellbeing 

Social 
Impact 

Task 1.3 defines health and 
wellbeing as outcomes (impacts) 
including physical health, mental 
health, social and family, work-
related needs, and health 
behaviours - physical activity, 
diet, and sleep (according to EU-
OSHA, 2023a). Also, the WHO 
emphasizes a holistic approach 
to well-being, encompassing 
physical, mental, and social 
dimensions to promote overall 
health and quality of life (WHO, 
1948; Topp et. al., 2015)  

As described, remote working 
arrangements encompass specific 
working conditions and 
organizational structures that 
generate psychosocial factors. These 
factors could potentially serve as 
sources or conditions that expose 
individuals to various 
biopsychosocial influences. 
Psychosocial factors, in turn, are 
closely linked to biological outcomes, 
potentially impacting health, illness, 
and the development of diseases. 

 

2. Polycentricity 
Spatial 
Impact 

The spatial phenomenon where 
at a regional scale multiple cities 
of similar size and importance 
exist; and at an urban scale 
multiple neighbourhoods or 
centres of similar importance 
exist 

As described by T1.2, polycentricity 
could be a multi-scale phenomenon. 
At a regional scale, it implies the rise 
of small/medium sized cities due to 
RWAs, while at a metropolitan scale 
it implies decentralisation towards 
the outskirts of the city 

3. 
Land 
Consumption 

Spatial 
Impact 

Land consumption can be 
defined as the expansion of 
built-up area for human 
settlements. Task 1.2 defines 
land consumption in terms of 
expansion of residential areas 
into previously undeveloped 
areas (due to more affordable 
housing options, less congestion 
and proximity to nature) 

 

4. 
Work-life 
Balance 

Socio-
econom
ic 
Impact 

Time management and 
boundary settings between work 
and personal life, and the impact 
on family and social life; the 
ability of balance professional 
responsibilities with personal life 
(report T1.3 p. 56) 

Work-life balance involves not only 
time management but also 
workload-related flexibility when 
needed. There are two key 
interfaces: a work-related supportive 
side and a life-related supportive 
side, each including various 
supportive services 
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5. 
Caring 
Responsibilitie
s 

Social 
Impact 

Defined in D1.3 as caring 
responsibilities, that includes 
housework, childcare, care for 
elderly, relatives. 

 

6. 
Employee 
Productivity 

Econom
ic 
Impact 

Employee productivity refers to 
how efficiently and effectively a 
worker or a group of workers 
contribute to accomplishing 
organizational goals 

 

7. Multilocality 
Spatial 
Impact 

T1.2 defines multilocality as the 
maintaining of residences and 
activities in multiple geographic 
locations. 

Greinke and Lange (2022), in their 
study in three rural districts in 
Germany, report that multilocality 
prevents complete relocation from 
rural to urban areas due to strong 
ties to family and friends. The 
potential impacts discussed include 
housing prices being driving up, new 
construction, reduced affordability 
and vacancy in rural areas (Greinke 
and Lange, 2022; Weichhart and 
Rumpolt, 2015); increased land 
consumption, travel distance and 
car-based commute, benefits to local 
economy, but pose a challenge in 
developing strong social ties and 
engagement in local civic activities 
(Danielzyk et al., 2020a; Dittrich 
Wesbuer et al., 2015). 

8. 
Workplace 
Loneliness 

Socio-
econom
ic 
Impact 

Defined in report T1.3 as 
workplace loneliness (in RWA (p. 
174), characterized by lack of 
information quality, supportive 
leadership, supportive 
conditions for job demands, and 
individual psychological states.   

As new ways of working evolve, the 
definition of the "workplace" is also 
changing. Employee services related 
to these "new workplace" aspects 
play a critical role in supporting job 
engagement, task completion, and 
providing network support when 
needed. 

9. Cost of Living 

Socio-
econom
ic 
Impact 

The amount of money that a 
person needs to pay for basic 
needs such as food, shelter, 
energy 
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10. 
Mobility 
Pattern 

Spatial 
Impact 

Patterns of human movement 
facilitated by public or private 
transportation. This factor 
mainly encompasses two 
aspects: the choice of transport 
modes and the purpose of trips 
 

A shift has been observed in modal 
split, purpose of trips due an increase 
in remote work 

11. 
Access to 
Labour Market 

Econom
ic 
Impact 

Defined as access to a diverse 
and competitive labour force for 
an employer. It also has a 
relevance for employees, who 
now have a wider access to job 
opportunities 

 

12. 
Social 
Cohesion 

Social 
Impact 

Defined as the presence or 
absence of a social ties or social 
support network. It can be both 
digital and physical social ties 

The factor has potential implications 
on individual well-being, mental 
health, loneliness and productivity.  

 

13. 

Local or 
Regional 
Economic 
Development 

Econom
ic 
Impact 

Economic development of a 
region through which a region is 
capable to improve its economic, 
political, and social welfare. 

Areas with higher remote job shares 
show greater employment resilience, 
supporting local economies through 
stable spending and economic 
growth, particularly in smaller cities, 
as reported by T1.4 

14. 

Tourist/ 
Digital Nomad 
Living Space 
Demand 

Socio-
econom
ic 
Impact 

The demand for living space 
from increased number of 
tourists and digital nomads 
because of remote work 

 

15 
Carbon 
emissions 

Spatial 
(Env.) 
Impact 

The amount of CA emitted into 
the atmosphere resulting from 
transport activities 

 

 

Annex Table 3: Definition of impact factors 
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The table with driver factor definitions is provided below. 

# Factor Type Definition Rationale 

1. 
Digital 
Infrastructure 
Accessibility  

Driver 

The factor can be defined as access 
to high quality (in terms of speed 
and coverage) and affordable 
internet  

Eurofound (2022a) identifies 
technical infrastructure (e.g., 
broadband accessibility) as a 
possible factor which might 
explain variations in the 
prevalence of telework noted 
across different countries, and 
between urban and rural areas 

2. 
Access to 
Local 
Amenities 

Driver 

Access to green areas, shopping, 
recreation, education, sports and 
community facilities, co-working 
spaces, etc. Access to local 
amenities can have a direct 
implication on the quality of life. 

 

3. 
Transport 
Accessibility 

Driver 

Transport accessibility refers to a 
measure of the ease of reaching 
(and interacting with) destinations 
or activities distributed in space. A 
place with "high accessibility" is one 
from which many destinations can 
be reached with relative ease. 

 

4. 

Taxation, 
Social 
Security, 
Insurance 
Regulations 

Driver 

 

Rules and laws governing how 
individuals and businesses are 
taxed, including income, sales, and 
corporate taxes. The factor 
encompasses tax rate differences 
between countries, double tax 
arrangements, social security and 
insurance frameworks 

 

 

Annex Table 4: Definition of driver factors 
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9.4 Annex 4 

The causal maps generated on each of the tables in the co-design workshop. 

 

 

Annex Figure 1: Causal Map generated on Table 1.2 
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Annex Figure 2: Causal Map generated on Table 2.2 

 

 

Annex Figure 3: Causal Map generated on Table 3.2 

 

 

 

Annex Figure 4: Causal Map generated on Table 4.2 
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Annex Figure 5: Causal Map generated on Table 5.2 
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